Store Depletion and Calcium Influx

ANANT B. PAREKH AND REINHOLD PENNER

Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany

I.	Introduction	902
II.	Store-Operated Calcium Influx: History	902
	A. Capacitative refilling of calcium stores	902
	B. Store-operated calcium entry across the plasma membrane	903
	C. Store-operated calcium current, I_{CRAC}	903
III.	Store-Operated Calcium Currents: Calcium Release-Activated Calcium Current	904
	A. Properties of I_{CRAC}	905
	B. Activation mechanisms of I_{CRAC}	907
	C. Inactivation mechanisms of I_{CRAC}	915
IV.	Other Calcium Influx Pathways	917
	A. Store operated	917
	B. Store independent	917
V.	Probing Store-Operated Calcium Influx	919
	A. Importance of SERCA inhibitors	919
	B. Cytosolic Ca ²⁺ measurements with indicator dyes	919
	C. Mn ²⁺ influx and fluorescence quench	920
	D. Ca ²⁺ -activated currents as reporters	920
	E. Patch-clamp measurements of I_{CRAC}	920
VI.	Molecular Biology of Store-Operated Channels	920
VII.	Physiological Functions of Calcium Release-Activated Calcium Current	922
	A. Refilling of stores	922
	B. Ca ²⁺ oscillations and waves	922
	C. Secretion	923
	D. Adenylate cyclase	923
	E. Gene transcription	923
	F. Cell cycle and proliferation	923
	G. Apoptosis	923
	H. Pathophysiology	924
VIII.	Concluding Remarks	924

Parekh, Anant B., and Reinhold Penner. Store Depletion and Calcium Influx. *Physiol. Rev.* 77: 901–930, 1997.—Calcium influx in nonexcitable cells regulates such diverse processes as exocytosis, contraction, enzyme control, gene regulation, cell proliferation, and apoptosis. The dominant Ca^{2+} entry pathway in these cells is the store-operated one, in which Ca^{2+} entry is governed by the Ca^{2+} content of the agonist-sensitive intracellular Ca^{2+} stores. Only recently has a Ca^{2+} current been described that is activated by store depletion. The properties of this new current, called Ca^{2+} release-activated Ca^{2+} current (I_{CRAC}), have been investigated in detail using the patch-clamp technique. Despite intense research, the nature of the signal that couples Ca^{2+} store content to the Ca^{2+} channels in the plasma membrane has remained elusive. Although I_{CRAC} appears to be the most effective and widespread influx pathway, other store-operated currents have also been observed. Although the Ca^{2+} release-activated Ca^{2+} channel has not yet been cloned, evidence continues to accumulate that the *Drosophila trp* gene might encode a store-operated Ca^{2+} channel. In this review, we describe the historical development of the field of Ca^{2+} signaling and the discovery of store-operated Ca^{2+} currents. We focus on the electrophysiological properties of the prototype store-operated current I_{CRAC} , discuss the regulatory mechanisms that control it, and finally consider recent advances toward the identification of molecular mechanisms involved in this ubiquitous and important Ca^{2+} entry pathway.

I. INTRODUCTION

One of the most important properties of any cell is its ability to interact with other cells within the organism. Such communication is mediated by a variety of primary signals received at the cell surface. These signals affect intracellular behavior (cell division, secretion, and motility) via specific second messengers that are elicited in response to the primary signal. Of the known second messengers, cytosolic Ca²⁺ is a major one in virtually every cell throughout the phylogenetic tree, where it regulates key processes like gene expression, secretion, contraction, and cellular metabolism (8). Eukaryotic cells can increase cytosolic free Ca²⁺ in one of two ways: either by releasing compartmentalized Ca²⁺ from intracellular stores or by evoking Ca²⁺ influx into the cell from the extracellular solution. The Ca²⁺ release phase is usually transient, fully deactivating within a few to a few tens of seconds. However, many processes require a sustained increase in cytosolic Ca²⁺ (e.g., release of hormones, contraction of blood vessels, gene transcription), and therefore, Ca²⁺ influx into the cell is crucial.

In excitable cells like neurons, muscle, and endocrine cells, Ca²⁺ influx is generally accomplished by voltage-operated Ca²⁺ channels. These are Ca²⁺-selective pores that become briefly activated during action potentials and thereby generate inward Ca²⁺ currents. These currents are usually quite large, being in the range of several hundred picoamperes to a few nanoamperes, and can therefore easily be measured in patch-clamp recordings. On the basis of single-channel conductance, voltage dependence, pharmacological profile, and molecular biology, several different classes of Ca²⁺ channel have been characterized and termed L-, T-, N-, P-, and Q-type channels (229).

In nonexcitable cells like cells of the immune system, endothelial cells lining the blood vessels, epithelial cells in the respiratory and digestive tracts, and hepatocytes that constitute the liver, voltage-operated Ca^{2+} channels are not expressed. Until relatively recently, the Ca^{2+} entry pathways present in such cells have been a contentious issue. Although numerous Ca^{2+} entry mechanisms have been postulated, it has now been firmly established that store-operated Ca^{2+} entry, where Ca^{2+} influx is specifically controlled by the filling state of intracellular Ca^{2+} stores, is the predominant pathway.

The importance of this signaling pathway has been recognized in numerous investigations and received a great deal of attention as witnessed by a large number of reviews on the topic (10, 32, 55, 163). In the present review, we attempt to cover most of the classical and more recent aspects of store-operated Ca²⁺ entry, well aware that the rapid pace at which the field advances may render some of the ideas emphasized here obsolete or substantiated by the time this review leaves the press.

II. STORE-OPERATED CALCIUM INFLUX: HISTORY

A. Capacitative Refilling of Calcium Stores

The concept of store-operated Ca²⁺ influx took its roots in a series of pioneering experiments conducted independently in parotid acinar and smooth muscle cells. Taking advantage of the fact that parotid acinar cells express Ca²⁺-dependent K⁺ channels, Putney (182) monitored submembranous cytosolic Ca²⁺ through the efflux rates of 42K⁺ and 86Rb⁺ from the cells. Application of the muscarinic receptor agonist carbachol triggered a biphasic release of the radioisotope from ⁸⁶Rb⁺-preloaded cells (182). The rapid transient efflux phase was unaffected by the removal of extracellular Ca²⁺, whereas the smaller sustained phase was abolished after either chelation of external Ca²⁺ or application of La³⁺. Unidirectional flux studies then demonstrated that carbachol increased ⁴⁵Ca²⁺ uptake into the parotid gland (5, 183). Hence, receptor stimulation evoked a biphasic increase in cytosolic Ca²⁺, due to release from an internal store and subsequent Ca^{2+} influx into the cell.

A clever series of "cross inactivation" experiments by Putney's group demonstrated that the receptor agonists carbachol, phenylephrine, and substance P all mobilized the same intracellular Ca²⁺ store and that this store could be depleted by repetitive stimulation in Ca²⁺-free solution (184). Refilling of the stores (monitored through receptorevoked ⁸⁶Rb⁺ efflux in Ca²⁺-free external solution) required the presence of extracellular Ca²⁺ and was fast, being complete within 4 min. This was in marked contrast to the depletion of the stores, which could take more than 20 min when cells were bathed in Ca²⁺-free ethylene glycol-bis(β -aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-containing solution. Hence, the stores depleted slowly but refilled quickly. A critical observation was that the stores refilled in the absence of an increase in ⁸⁶Rb⁺ efflux. In these experiments, Ca2+ was readmitted to parotid gland cells whose internal Ca²⁺ stores had been depleted by repetitive stimulation with substance P in Ca²⁺free solution. Calcium readmission per se did not trigger any 86Rb⁺ efflux, but the subsequent challenge with substance P in Ca²⁺-free solution resulted in large ⁸⁶Rb⁺ ef-

Putney (184) suggested that receptor-evoked Ca²⁺ influx directly passed into the internal store without first traversing the cytosol. Further experiments utilizing a different protocol were consistent with this idea (177). After carbachol stimulation, application of the receptor antagonist atropine transiently increased ⁴⁵Ca²⁺ uptake, but this was associated with a decrease in ⁸⁶Rb⁺ efflux rather than an increase, which one would have expected if the Ca²⁺ first passed into the cytosol. Thus Putney's work on pa-

rotid gland suggested that receptor stimulation evoked a biphasic increase in Ca^{2+} that was due to Ca^{2+} release and then Ca^{2+} influx. The internal Ca^{2+} store filled rapidly from the external solution, and Ca^{2+} moved from the extracellular solution directly into the stores without first entering the cytosol.

Independent experiments on smooth muscle, an excitable cell, drew similar conclusions. Casteels and Droogmans (26) examined the properties of the norepinephrinesensitive Ca²⁺ store in smooth muscle cells from rabbit ear artery. They found that the store could be depleted by repetitive stimulation in Ca2+-free solution and that the store refilled very quickly when external Ca²⁺ was readmitted. The refilling process did not evoke a muscle contraction, despite significant Ca²⁺ entry. This led Casteels and Droogmans (26) to suggest that the stores refilled through a pathway that communicated directly with the extracellular solution. Unidirectional ⁴⁵Ca²⁺ flux experiments then demonstrated that Ca²⁺ uptake was substantially larger in muscle strips whose stores had been depleted by a challenge with norepinephrine in Ca²⁺-free solution than in control strips, despite both having been exposed to Ca²⁺-free solution for the same period of time. This crucial result demonstrated that the Ca²⁺ content of the agonist-sensitive store was capable of regulating a Ca²⁺ influx pathway in the plasma membrane.

B. Store-Operated Calcium Entry Across the Plasma Membrane

The experiments described above led Putney (185) to propose a model for receptor-evoked Ca²⁺ influx in 1986, which he termed capacitative Ca²⁺ influx. In this early formulation, Ca²⁺ entry would be determined by the concentration gradient for Ca²⁺ between the external solution and the stores, since a direct communication was envisaged. Emptying stores would automatically cause Ca²⁺ influx which, if the stores retained a high permeability to Ca²⁺ [through elevated inositol 1,4,5-trisphosphate (InsP₃)], would pass directly through the stores into the cytosol. Because of this direct communication, there was no requirement for any signal other than the depletion of the stores

Despite its simplicity, store-operated $\mathrm{Ca^{2+}}$ influx did not gain wide acceptance as a general mechanism for $\mathrm{Ca^{2+}}$ entry at the time. Contemporary reviews instead focused on another mechanism for $\mathrm{Ca^{2+}}$ influx involving inositol 1,3,4,5-tetrakisphosphate (InsP₄), a more long-lived metabolite derived from InsP₃ (81, 82, 172; see sect. IVB). Indeed, some features of $\mathrm{Ca^{2+}}$ entry found in other cells were not compatible with a direct refilling pathway. For example, experiments employing the patch-clamp technique in mast cells demonstrated that $\mathrm{Ca^{2+}}$ influx occurred after a substantial delay following $\mathrm{Ca^{2+}}$ release induced

by $InsP_3$ (164). Moreover, this influx was exquisitely sensitive to membrane potential changes. This is difficult to reconcile with a direct passage of Ca^{2+} from the external solution into the cytosol via the stores, because this would be expected to occur quickly and not be sensitive to voltage.

Around the time Putney proposed the model of storeoperated Ca²⁺ influx, Tsien and colleagues (68) developed a series of new fluorescent probes for monitoring cytosolic Ca²⁺. These molecules, epitomized by guin 2 and more importantly fura 2, were available in membranepermeable forms that readily crossed the plasma membranes of a variety of different cells. The introduction of these molecules heralded a revolution in the field of Ca²⁺ signaling. For the first time, cytosolic Ca²⁺ could be measured in a noninvasive manner using a very sensitive assay. A second important tool was the introduction of thapsigargin as a means to deplete intracellular Ca²⁺ stores without a concomitant rise in InsP₃ (223). When combined with microfluorimetry it revealed that depletion of stores alone was a sufficient stimulus to initiate Ca²⁺ entry (219). This study also showed that agonists and thapsigargin activated the same Ca²⁺ entry pathway in a nonadditive manner. One important difference in the fura 2 experiments was that Ca²⁺ influx was detected as a rise in cytosolic Ca²⁺. This led Takemura et al. (218) to conclude that Ca²⁺ influx passed first into the cytosol rather than directly into the stores, and the capacitative model was revised to account for the new insight (186). Since then, the presence of store-operated Ca²⁺ entry has been documented in a large variety of cells, in most cases based on measurements of intracellular Ca²⁺ levels after store depletion by thapsigargin (Table 1).

C. Store-Operated Calcium Current, I_{CRAC}

If depletion of stores activates Ca^{2^+} influx, one would expect to measure this as a current flowing across the plasma membrane. Such currents can only be demonstrated using the patch-clamp technique. The first unambiguous demonstration of a store-operated Ca^{2^+} current was shown in mast cells by Hoth and Penner (77), and the current was termed Ca^{2^+} release-activated Ca^{2^+} current (I_{CRAC}). As of now, I_{CRAC} is the best-characterized store-operated Ca^{2^+} current and has the highest selectivity for Ca^{2^+} over other cations.

With the advantage of hindsight, two papers described currents that were subsequently shown to be store-operated Ca²⁺ currents. In 1988, Penner et al. (164) observed a small inward current in rat mast cells after elevation of InsP₃, and this current was tightly correlated with the development of Ca²⁺ plateaus arising from Ca²⁺ entry (164). In 1989, Lewis and Cahalan (105) described in more detail a similar Ca²⁺ current in Jurkat T cells that

Table 1. Store-operated influx in various cell types

Cell Type	Activation	Reference No.
Pancreatic acinar cells	InsP ₃ , thapsigargin, TBHQ, acetylcholine, cholecystokinin	6, 63, 153, 174
Pancreatic β -cells	Thapsigargin	12, 22
Insulinoma cells (RINm5F)	Thapsigargin	21
Hepatocytes	Thapsigargin, vasopressin, TBHQ, InsP ₃	13, 108, 217
Lacrimal acinar cells	Thapsigargin, methacholine	17, 100
Colonic epithelial cells (HT-29)	CPA, carbachol, ATP, EGTA, BAPTA	19, 91
Smooth muscle	Caffeine, carbachol	111
Smooth muscle (A7r5)	Vasopressin	20, 25
Adrenal glomerulosa cells	Thapsigargin, TBHQ, angiotensin II	24, 193
Platelets	Thapsigargin, TBHQ, ionomycin, A-23187, PAF, thrombin	27, 46, 88, 195, 206, 241
Renal proximal cells	ATP	28
Glioma (C6-2B)	Thapsigargin, ionomycin, ATP, UTP	29, 144
HeLa	Thapsigargin, histamine	34, 181
Embryonic kidney (HEK 293)	Carbachol	37 [′]
Oocytes	InsP ₃ , serotonin, acethylcholine, thapsigargin	40, 161, 168, 169
Neutrophils	FMLP, thapsigargin	43, 139
Lymphocytes (Jurkat T cells)	Thapsigargin, TBHQ, CPA, ionomycin, mitogen, EGTA, BAPTA, InsP ₃	44, 106, 119, 162, 179
Endothelial cells	Thapsigargin, TBHQ, CPA, InsP ₃ , bradykinin, substance P	61, 67, 151, 200, 205
Neuroblastoma (NG115-401L, SH-SY5Y, N1E-115)	Thapsigargin, carbachol	84, 101, 124
Fibroblasts	Thapsigargin, bradykinin	102
Basophilic leukemia cells (RBL-2H3, RBL-1)	Antigen, thapsigargin, InsP ₃ , EGTA, BAPTA, thimerosal	75, 103, 158, 248
Parotid acinar cells	Carbachol	109
Macrophages	Thapsigargin, InsP ₃ , EGTA, BAPTA	118
Sublingual mucosa cells	Thapsigargin, carbachol	129
Thyrocytes	Thapsigargin, ATP, UTP	201
Thyroid cells (PC C13)	Norepinephrine	132
Human leukemia (HL-60)	Thapsigargin	139
Gastric mucosa cells	Thapsigargin, ATP, UTP	202
Pinealocytes	Thapsigargin, norepinephrine, acetylcholine	203
Osteoclasts	Ionomycin	204
Nasal gland cells	Carbachol	209
Cerebellar granule cells	Thapsigargin	211
Megakaryocytes	Ionomycin	214
Parotid acinar cells	Methacholine	219
Smooth muscle (DDT1MF-2)	Thapsigargin, caffeine	230
Insect fat body cells	Adipokinetic hormone	236
Pituitary cells (GII ₃)	Thapsigargin, ionomycin, TRH	239
Mast cells	InsP ₃ , ionomycin, EGTA, BAPTA	52-54, 77, 78

 $InsP_3$, inositol 1,4,5-trisphosphate; PAF, platelet-activating factor; TRH, thyrotropin-releasing hormone; FMLP, N-formyl-methionyl-leucyl-phenylalanine; CPA, cyclopiazonic acid; TBHQ, di-tert-butylhydroquinone.

was activated by either high concentrations of the fast $\mathrm{Ca^{2^+}}$ chelator 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or receptor stimulation. Again, the presence of this $\mathrm{Ca^{2^+}}$ current correlated well with $\mathrm{Ca^{2^+}}$ influx monitored using indo 1. However, at the time, neither study realized that the current (now identified and characterized as I_{CRAC}) was in fact activated by store depletion.

The fact that Ca^{2+} does not directly pass into the stores is of major significance, because it means that an active signal is required to couple the Ca^{2+} content of the stores to Ca^{2+} channels in the plasma membrane, and it raises the key question as to the nature of the signal providing this link. Despite intense effort, this signal has remained elusive (see sect. IIIB). Because of this less direct coupling, the term *capacitative* is not strictly applicable to describe the influx mechanism. The participants of a recent meeting suggested to rename "capacitative" Ca^{2+}

influx as store-operated Ca²⁺ influx (33), and we have therefore adopted this terminology in the review.

III. STORE-OPERATED CALCIUM CURRENTS: CALCIUM RELEASE-ACTIVATED CALCIUM CURRENT

Direct evidence in support of store-operated Ca^{2+} influx is provided by the electrophysiological demonstration of Ca^{2+} currents activated by depleting intracellular Ca^{2+} stores. Recent studies employing the patch-clamp technique have now clearly established the existence of store-operated Ca^{2+} currents in a variety of nonexcitable cells (Table 2). The currently best-characterized cells are mast cells, rat basophilic leukemia (RBL) cells, and Jurkat T cells, in which I_{CRAC} appears to be the crucial influx pathway.

Table 2. Calcium influx channels and currents in various cell types

Current	Conductance	Selectivity	Activation	Cell Type	Reference No
		Store-operated	d channels		
$I_{ m CRAC}$	0.02 pS (110 Ca ²⁺)	$Ca^{2+} > Ba^{2+} > Mn^{2+}$	Agonists InsP ₃ Ionomycin EGTA/BAPTA Thapsigargin	Mast cell RBL-1, RBL-2H3 Jurkat T cells Macrophages Megakaryocytes MDCK cells 3T3 fibroblasts HL-60 cells Hepatocytes Pancreatic acinar Endothelial cells Oocytes	77 53, 248 128, 252 118 214 42 76 76 6 231, 232
$I_{ m DC}$	11 pS (10 Ca ²⁺)	$\mathrm{Ca^{2+}}>\mathrm{Na^{+}}$	Agonists TBHQ	Endothelial cells	233
$I_{ m DC}$	2 pS (160 Ca ²⁺) 20 pS (160 Ba ²⁺)	$Ba^{2+} > Ca^{2+} = Mn^{2+}$	BAPTA/0 Ca ²⁺ Thapsigargin	A 431 cells	114
		Second messenger-o	perated channels		
$I_{\text{Ca}/\text{InsP}_4}$ I_{InsCa^2+} I_{InsP_3} I_{InsP_3} I_{InsP_3} I_{InsP_3} $I_{\text{GTP}\gamma\text{S}}$ $I_{\text{GTP}\gamma\text{S}}$	2 pS (100 Mn ²⁺) 5-20 pS (90 Ca ²⁺) 8 pS (100 Ca ²⁺) 7 pS (100 Ba ²⁺) 4-13 pS (110 Ca ²⁺) 50 pS (Ringer) 10-20 pS (95 Ba ²⁺) 1-2 pS (110 Ca ²⁺) 4-17 pS (10 Ca ²⁺)	$\begin{array}{l} Ca^{2+} = Ba^{2+} = Mn^{2+} > Na^+ \\ Ca^{2+} = Na^+ = K^+ \\ Ca^{2+} > Ba^{2+} > Na^+ \\ Ca^{2+} = Ba^{2+} \\ Ca^{2+} = Ba^{2+} \\ Na^+ > Ba^{2+} > Ca^{2+} > Mn^{2+} \\ \end{array}$	Ca^{2+} , InsP ₄ Ca^{2+} InsP ₃ InsP ₃ , EGF GTP γ S, substance P GTP γ S GTP γ S, ATP	Endothelial cells Neutrophils Endothelial cells Jurkat T cells A 431 cells Mast cells A 431 cells Macrophages	113 240 234 99 143 126, 164 142 145
		$Receptor ext{-}opera$	ted channels		
$I_{ m ATP} \ I_{ m P_{2x1}}$	5 pS (110 Ca ²⁺) 11 pS (110 Ca ²⁺)	$Ca^{2+} = Ba^{2+} > Na^+$ $Na^+ > Ba^2$	ATP ADP	Smooth muscle Platelets	7 116, 117

EGF, epidermal growth factor; GTPγS, guanosine 5'-O-(3-thiotriphosphate). For current definitions, see text.

A. Properties of I_{CRAC}

Calcium release-activated Ca2+ current can be activated by a variety of procedures that share the common property of emptying the intracellular InsP₃-sensitive stores. Store depletion can be accomplished by both active and passive protocols. Active ways involve 1) inclusion of InsP₃ in the patch pipette solution (77), 2) external application of Ca²⁺ ionophores like ionomycin (77), and 3) exposure to receptor agonists that elevate InsP₃ levels (158). Passive methods rely on the endogenous leak of Ca²⁺ from the stores. They prevent refilling so that the stores gradually lose their Ca²⁺. These include 1) dialyzing the cytoplasm with high concentrations of the Ca²⁺ chelators EGTA or BAPTA, which chelate Ca2+ and hence prevent store refilling (77, 78, 252); 2) application of sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase (SERCA) inhibitors like thapsigargin which also prevent refilling (179, 159); and 3) sensitizing the $InsP_3$ receptor to resting levels of InsP₃ with agents like thimerosal (157). Regardless of how the stores are depleted, I_{CRAC} activates with virtually identical properties, and $I_{\rm CRAC}$ has several diagnostic features.

1. Current-voltage relationship

Calcium release-activated Ca²⁺ current is a voltageindependent Ca²⁺ current in the sense that it is not gated by membrane voltage changes (78, 252). However, once activated, I_{CRAC} has a characteristic current-voltage relationship that shows relatively large currents at negative voltages and a reversal potential positive to +50 mV. The standard experimental paradigm to monitor I_{CRAC} is to apply voltage ramps spanning a range of about −100 to +100 mV. Under these conditions, I_{CRAC} has a steep current-voltage relationship that gives rise to prominent inward rectification at negative voltages. Part of this is attributable to the fact that asymmetric Ca²⁺ concentrations are used to measure the current (usually 10 mM Ca²⁺ outside and a few nM Ca2+ inside), which would give rise to some rectification as predicted by the Goldman-Hodgkin-Katz theory. A further accentuation of the rectification observed with the ramp protocol arises from Ca²⁺-

dependent inactivation of I_{CRAC} (78, 253), which leads to an apparent steepening of the current-voltage curve at negative potentials. For a more detailed discussion of the negative-feedback inhibition of I_{CRAC} by intracellular Ca^{2+} concentration ([Ca²⁺]_i), see section IIIC.

2. Selectivity for Ca^{2+}

As expected for selective Ca²⁺ currents (as opposed to Ca^{2+} -permeable nonselective cation currents), I_{CRAC} has a very positive reversal potential (greater than +50 mV). Changing external Na⁺ has no significant effect on I_{CRAC} , demonstrating that little, if any, Na⁺ permeates the channel in the presence of external Ca²⁺ (78, 104). Calcium release-activated Ca²⁺ current is remarkably selective for Ca²⁺, and acute replacement of external Ca²⁺ with Ba²⁺ or Sr²⁺ results in substantially less current (77, 252). This divalent cation selectivity profile of $Ca^{2+} > Ba^{2+} = Sr^{2+}$ is not exhibited by voltage-operated Ca²⁺ channels, which are equally, if not more, permeable to Ba²⁺ and Sr²⁺. In the sustained presence of Ba²⁺, kinetically complex currents develop through Ca⁺ release-activated Ca²⁺ (CRAC) channels (75, 78). After the initial transient decrease in current amplitude, there is a large increase in current that decays over several tens of seconds to attain a steady state. Replacing Ca²⁺ with Ba²⁺ now results in a transient increase in current amplitude before settling at a final steady-state level. These complex kinetic changes are only seen at negative voltages. Interestingly, some differences in the permeability to Ba²⁺ and Sr²⁺ have been noted when comparing I_{CRAC} in RBL cells and Jurkat T cells, which might point toward heterogeneity of I_{CRAC} in different cell types (75).

A further difference between the CRAC and voltageoperated Ca²⁺ channels is that the latter conduct outward Ca⁺ or K⁺ currents at potentials positive to the Ca²⁺ reversal potential. Calcium release-activated Ca²⁺ current does not conduct any significant outward monovalent cation currents unless external Ca²⁺ is lowered from 10 to 2 mM (75). Under these conditions, small outward K⁺ (but not Cs⁺) currents can be recorded through CRAC channels.

One good way to estimate the Ca^{2+} permeability of a channel is to relate the amount of Ca^{2+} entering per unit time (integral of the Ca^{2+} current) to the change in the Ca^{2+} -dependent wavelength of fura 2, when this dye is the dominant Ca^{2+} buffer in the cell (148, 147). The assumption is that all incoming Ca^{2+} binds to fura 2. With the use of this method, it was concluded that I_{CRAC} in mast and RBL cells is more selective for Ca^{2+} than voltage-operated Ca^{2+} channels (78). This is a remarkable property of CRAC channels when one bears in mind that voltage-operated Ca^{2+} channels are 1,000 times more selective for Ca^{2+} than Na^+ .

3. Ca^{2+} -dependent potentiation

In addition to its inhibitory actions (see sect. IIIC), Ca^{2+} has been reported to potentiate Ca^{2+} influx. In *Xeno*-

pus oocytes, it was found that raising external Ca²⁺ or hyperpolarizing the membrane resulted in a highly nonlinear increase in the Ca²⁺-activated Cl⁻ current in thapsigargin-treated oocytes (168). It was suggested that Ca²⁺ entry elevated cytosolic Ca²⁺, which then increased activity of CRAC channels. This would constitute a positive-feedback cycle by Ca²⁺ on its own influx. However, the highly nonlinear increase in Cl⁻ current on raising external Ca²⁺ was not observed in another study on oocytes (160). In Jurkat T cells, two groups independently reported that activity of CRAC channels was gated by external Ca²⁺ (30, 255). Readmission of Ca²⁺ resulted in a biphasic return of the current; an initial fast step was followed by a slower increase over several seconds. Similar results were observed when cells were held at positive potentials and then stepped to negative ones. These effects were observed in the presence of high concentrations of Ca²⁺ chelators and were blocked by Ni²⁺ acting extracellularly. It was concluded that the actions of Ca²⁺ were exerted on an extracellular site rather than a cytosolic one, in contrast to the conclusion from the oocyte experiments. In RBL cells, we have failed to see this potentiation when applying rapid changes in the membrane potential (unpublished observations). Whether or not Ca²⁺-dependent potentiation is a widespread mechanism remains to be determined. Like the slight differences in selectivity for Ba²⁺ and Sr²⁺, it might serve as a diagnostic tool in identifying different members of the presumed CRAC channel family.

4. Single-channel conductance

Calcium release-activated Ca²⁺ current has a very low single-channel conductance. Over a variety of voltages, Hoth and Penner (77) did not detect any increase in the variance as the current developed in mast cells. They estimated that if I_{CRAC} flowed through a channel mechanism, then the single-channel conductance would be substantially lower than 1 pS. Using noise analysis in Jurkat T cells, Zweifach and Lewis (252) estimated a single-channel conductance of 24 fS. This is almost three orders of magnitude smaller than single-channel conductances typical of most ionic channels. It was estimated that T cells would express 10⁶ CRAC channels in the plasma membrane. Because I_{CRAC} has such a small conductance, one obvious question is whether the permeation pathway for CRAC reflects ion channel or carrier mechanisms. Resolution of this will have to await the cloning of the CRAC protein, but three lines of evidence are compatible with the permeation pathway being a channel. First, like voltage-gated Ca²⁺ channels, CRAC becomes nonselective in the absence of external divalent cations and then supports large Na^+ current. Second, I_{CRAC} exhibits anomalous mole fraction in the presence of different ratios of Ba²⁺ and Ca²⁺. This is characteristic of Ca²⁺ channels and reflects at least two $\mathrm{Ca^{2^+}}$ binding sites with the pore. Finally, step hyperpolarizations evoke an instantaneous increase in conductance that is characterstic of a channel. Further evidence for I_{CRAC} being an ion channel mechanism comes from single-channel recordings of $\mathrm{Na^+}$ flowing through I_{CRAC} . When I_{CRAC} carries monovalent ions, its unitary conductance increases to $\sim\!2$ pS, allowing the study of its properties at the single-channel level (104).

5. Pharmacological profile

Although several compounds have been reported to inhibit store-operated ${\rm Ca^{2^+}}$ influx (3, 34, 35, 58, 61, 191), there is other evidence that suggests these drugs may not be selective for $I_{\rm CRAC}$ (4, 57, 238). Some of the proposed inhibitors (e.g., econazole, SK&F-96365) not only block $I_{\rm CRAC}$ but also ${\rm Cl^-}$ and nonselective cation channels at similar concentrations (57). Hence, block of ${\rm Ca^{2^+}}$ influx by these inhibitors is not diagnostic for $I_{\rm CRAC}$. Clearly, the lack of specific inhibitors is a major obstacle to the development of the field.

Like voltage-operated Ca^{2^+} channels, I_{CRAC} is blocked by a series of divalent cations with the following selectivity (all at 1 mM, Ref. 78): $Zn^{2^+} > Cd^{2^+} > Be^{2^+} = Co^{2^+} = Mn^{2^+} > Ni^{2^+} > Sr^{2^+} > Ba^{2^+}$. Interestingly, a similar divalent cation blocking profile on store-operated Ca^{2^+} influx is observed in *Xenopus* oocytes (156), which might indicate that this divalent selectivity profile is typical of store-operated Ca^{2^+} entry in a number of different cell types.

B. Activation Mechanisms of I_{CRAC}

1. Stores

It seems clear that depletion of cellular Ca²⁺ stores activates Ca²⁺ entry, but it is by no means apparent what the nature of these stores is and what exact quantitative relationship exists between degree of filling and activation of influx.

In addition to $InsP_3$ -sensitive stores, nonexcitable cells can also possess $InsP_3$ -insensitive ones. These include ryanodine-sensitive stores as well as stores that respond to novel intracellular messengers like sphingosine-1-phosphate (127, 215). Activation of I_{CRAC} seems restricted to the $InsP_3$ -sensitive stores. The amplitude of I_{CRAC} after maximal depletion of the $InsP_3$ stores is similar to the amplitudes when all stores are emptied with either ionomycin or by dialyzing the cells with high-EGTA solution (78, 159). The amplitude of I_{CRAC} evoked by $InsP_3$ cannot be further enhanced by depletion of the $InsP_3$ -insensitive stores with ionomycin. It therefore appears that I_{CRAC} is restricted to the $InsP_3$ -sensitive stores.

Where are the $InsP_3$ stores that activate I_{CRAC} located in the cytosol? Paradiso et al. (154) carried out a clever set of experiments on human nasal airway epithelial cell

monolayers. These are polarized cells where receptors are expressed on specialized cellular domains, like the apical and serosal surfaces. They found that stimulation of apical P₂ purinoceptors increased InsP₃, mobilized InsP₃ stores, and triggered Ca²⁺ influx only at the ipsilateral surface. No release of InsP₃-sensitive stores or Ca²⁺ influx was observed at the basolateral surface. Similarly, stimulation of basolateral ATP receptors resulted in Ca²⁺ release and Ca²⁺ influx that was confined to this region. No Ca²⁺ release or influx was seen in the contralateral membrane. This result suggests that in the polarized epithelial cells, receptor-mediated responses are confined to a specific region of the cell where the activated receptors reside. Production, diffusion and catabolism if InsP₃, as well as Ca²⁺ influx, are confined to this domain. It should be pointed out that the Ca²⁺ influx pathway in the experiments of Paradiso et al. (154) might not necessarily be a store-operated Ca²⁺ influx pathway. Recall that epithelial cells possess a Ca²⁺-activated cation channel permeable to Ca²⁺ (23). This channel could underlie the P₂ receptormediated Ca²⁺ influx in the human epithelial cells. In pancreatic acinar cells, the situation appears to be different, since agonist stimulation or InsP₃ injection at the basal pole evokes the most marked [Ca²⁺]_i rise at the apical secretory pole (90, 227), suggesting that in these cells the spatial distribution of InsP₃ receptors determines the site of the primary Ca²⁺ release with InsP₃ acting as a mobile messenger.

Parekh and Penner (157) examined this issue using whole cell patch-clamp recordings in RBL cells. They took advantage of the sulfhydryl-containing organic compound thimerosal, which increases the sensitivity of the InsP₃ receptor for InsP₃ by two- to fivefold. In the absence of InsP₃ in the patch pipette solution, they found that application of thimerosal activated I_{CRAC} . This was prevented by inhibition of the InsP3 receptor, as expected if the effects of thimerosal involved this receptor. Strikingly, Parekh and Penner (157) found that thimerosal could activate I_{CRAC} to its maximal amplitude even after 900-s dialysis with solutions lacking any exogenous InsP₃. Under these conditions, global InsP₃ levels would be very low. Inositol 1,4,5-trisphosphate has a lifetime of ~ 1 s in the cytosol and would diffuse out of the cell with a time constant of ~30 s. In whole cell recordings, high concentrations of InsP₃ are required to activate I_{CRAC} (~3 μ M). For thimerosal to still activate I_{CRAC} under these conditions indicates that the InsP₃ receptors, and therefore the Ca²⁺ stores, that are sensitized by thimerosal must sense InsP₃ levels of several hundred nanomolar. It is difficult to see how this could be accomplished after 900-s whole cell recording in the absence of stimulation unless the stores were close to the site of InsP₃ production. Because this is at the plasma membrane, it would appear that the stores activating I_{CRAC} are also near the plasma membrane.

A similar conclusion about the close proximity of

stores and influx channels was drawn from studies in oocytes, where localized agonist application induced local $\mathrm{Ca^{2^+}}$ release, which was followed by localized $\mathrm{Ca^{2^+}}$ influx (170).

2. Ca^{2+} sensor

What links the Ca^{2+} content of the $InsP_3$ -sensitive intracellular store to CRAC channel activity in the plasma membrane? Two components are necessary: a sensor of the store Ca^{2+} content and the activating signal. The molecular nature of the sensor is not known. However, two candidates have been proposed: the $InsP_3$ receptor and the Ca^{2+} binding protein calreticulin.

The $InsP_3$ receptor has remained something of an enigma. Although it has been established that cytosolic Ca^{2+} exerts a biphasic action on the Ca^{2+} release process with low concentrations facilitating $InsP_3$ -mediated Ca^{2+} release and higher concentrations inhibiting it, several other key aspects of the release process are still unclear. Does the $InsP_3$ receptor inactivate in the presence of a fixed $InsP_3$ concentration? Conflicting results have been observed, with some groups reporting inactivation and others not. How is "quantal Ca^{2+} release" generated, and is the $InsP_3$ receptor regulated by luminal Ca^{2+} ?

The idea that the $InsP_3$ receptor is sensitive to luminal Ca^{2+} was first postulated by Irvine (82). In an influential review, he proposed that the $InsP_3$ receptor on the stores directly coupled to an $InsP_4$ receptor in the plasma membrane and that the $InsP_4$ receptor was possibly the Ca^{2+} influx pathway. He conjectured that the $InsP_3$ receptor was directly gated by luminal Ca^{2+} . Emptying of the stores reduced luminal Ca^{2+} , which induced a conformational change in the $InsP_3$ receptor. This was then transferred to the $InsP_4$ receptor/ Ca^{2+} channel by a conformational change resulting in Ca^{2+} influx. In Irvine's model, the $InsP_3$ receptor itself was the sensor of the stores Ca^{2+} content.

Subsequent experiments reported that the ability of InsP₃ to release Ca²⁺ from permeabilized cells was dependent on the luminal Ca2+ content (134, 150, 152). An increase or a decrease in luminal Ca²⁺ content enhanced or reduced, respectively, the sensitivity of the InsP₃ receptor for InsP₃. However, other reports failed to observe an effect of luminal Ca²⁺ on InsP₃-dependent Ca²⁺ release. In an exocrine gland, Shuttleworth (208) found that the sensitivity of the InsP₃ receptor to InsP₃ did not change when stores were loaded with different amounts of Ca²⁺. A similar conclusion was drawn from studies in hepatocytes by Combettes et al. (36). In permeabilized RBL cells, Horne and Meyer (74) found that luminal Ca²⁺ regulated the InsP₃ receptor, but this was through an action on the cytosolic side that was prevented by high concentrations of the fast Ca²⁺ chelator BAPTA. Bezprozvanny and Ehrlich (15) reported that submillimolar concentrations of luminal Ca²⁺ had no effect at all on InsP₃-mediated channel opening when reconstituted in planar lipid bilayers. Many of the reports that have failed to document an effect of luminal $\mathrm{Ca^{2+}}$ on the $\mathrm{InsP_3}$ receptor have been conducted on cell types that exhibit store-operated $\mathrm{Ca^{2+}}$ influx. These results would tend to argue against a role for the $\mathrm{InsP_3}$ receptor that releases $\mathrm{Ca^{2+}}$ as the direct $\mathrm{Ca^{2+}}$ sensor of the stores.

Recent experiments have hinted that different $InsP_3$ receptors might have different functions. A currently popular idea is that the type 1 $InsP_3$ receptor is the major isoform that controls Ca^{2^+} release, whereas the type 3 subtype might be more involved in Ca^{2^+} influx (see sect. IIIB4). In some cell types, like *Xenopus* oocytes which have store-operated Ca^{2^+} influx, the type 3 $InsP_3$ receptor is not expressed when examined using Western blots (39), which would argue against a role for the type 3 $InsP_3$ receptors as a ubiquitous Ca^{2^+} sensor.

It seems a reasonable presumption that the sensor of the Ca^{2+} stores binds luminal Ca^{2+} and is therefore some sort of Ca^{2+} -binding protein. The first possible candidate was suggested to be calmodulin by Alvarez et al. (3). They found that calmodulin inhibitors increased Mn^{2+} uptake into thymocytes in the absence of store depletion. Importantly, these same calmodulin inhibitors apparently had no effect on Mn^{2+} uptake in cells whose stores had already been depleted (3). They conjectured that, in full stores, the Ca^{2+} -calmodulin complex inhibited the activation mechanism of Ca^{2+} influx (in their hands, cytochrome P-450, see sect. IIIB3). When stores were depleted, the inhibition was removed.

A major $\operatorname{Ca^{2+}}$ -binding protein within the stores is calreticulin. Mery et al. (131) overexpressed the protein in L fibroblasts and found that thapsigargin-evoked $\operatorname{Ca^{2+}}$ influx was abolished, whereas $\operatorname{Ca^{2+}}$ release was apparently unaffected. They suggested that calreticulin was involved in the activation mechanism through an action independent of its $\operatorname{Ca^{2+}}$ -binding properties. How calreticulin interferes with $\operatorname{Ca^{2+}}$ influx is not known.

3. Signal transduction

Despite intense investigation for several years, the nature of the activating signal that emanates from depleted stores is still unknown. Current models fall into two main categories (see Table 3): indirect coupling and direct coupling. Indirect coupling proposes an intermediate signal transduction pathway that could either result in the formation of a small messenger molecule acting as ligand to open the channels or trigger biochemical events that could covalently gate the channels, or even insert channels into the surface membrane. On the other hand, a direct coupling mechanism assumes a physical interaction between proteins in the plasma and organelle membrane. In this section, we briefly describe the main mechanisms that have been proposed to be involved in the activation of store-operated Ca²⁺ entry.

Table 3. Proposed mechanisms of store-operated influx

D' et Ce eller	Indirect Coupling			
Direct Coupling Mechanism	Second messenger	Kinase/phosphatase	Other	
Ins P_3 and Ins P_4 receptor (82) Ins P_3 receptor type 3 (10)	cGMP (6, 63, 153, 245) CIF (62, 187, 225) InsP ₄ (141, 172)	CaM kinase II (60) Tyrosine kinase (88, 89, 132, 198, 241, 247) Protein kinase C (21) Protein phosphatase (94)	Fusion (214) G protein (17, 53, 56, 244) Cytochrome <i>P</i> -450 (67)	

Reference numbers are given in parentheses. cGMP, guanosine 3',5'-cyclic monophosphate; CIF, Ca^{2+} influx factor; InsP₄, inositol 1,3,4,5-tetrakisphosphate; CaM, calmodulin.

A) CALCIUM INFLUX FACTORS. Randriamampita and Tsien (187) reported the isolation of a low-molecularweight compound from Jurkat T lymphocytes that was released from depleted stores and which then activated Ca²⁺ influx in several different nonexcitable cells. They coined the term Ca^{2+} influx factor (CIF) for this novel messenger (187). Calcium influx factor was a nonprotein factor possessing a phosphate group. Breakdown of CIF could be prevented by okadaic acid, a protein phosphatase inhibitor (188). Independent studies by Hanley's group also resulted in the isolation of CIF from stimulated lymphocytes. Injection of CIF into oocytes evoked Ca²⁺ influx, which was potentiated by okadaic acid (93, 225). Earlier studies by Parekh et al. (161) had demonstrated that okadaic acid enhanced store-operated Ca²⁺ influx in oocytes after receptor stimulation. Based on the observation that okadaic acid enhanced the effects of CIF. Randriamampita and Tsien (187) linked the data from oocytes with that of CIF. It should be stressed that there is no evidence suggesting a role for an endogenous low-molecular-weight CIF in the oocyte, nor was a low-molecularweight molecule postulated in the study of Parekh et al. In fact, Parekh et al. (161) pointed out that . . . "The molecule ... may be a novel kinase and gate Ca2+ influx through a phosphorylation/dephosphorylation cycle."

Evidence against a major role for CIF was provided by Putney's group (16, 62). They extracted CIF from T cells and showed that it evoked ${\rm Ca^{2^+}}$ influx in astrocytoma cells, independent of ${\rm InsP_3}$ release. However, in mouse lacrimal acinar cells and rat hepatocytes, the extract caused ${\rm Ca^{2^+}}$ release and then ${\rm Ca^{2^+}}$ influx. The muscarinic receptor antagonist atropine abolished the effects of CIF, indicating that the extract possessed some ability to activate cell-surface muscarinic receptors (which couple to ${\rm InsP_3}$ production). They concluded that the actions of the extract were not compatible with its containing the messenger for store-operated ${\rm Ca^{2^+}}$ influx.

So far, the crucial experiment demonstrating activation of $I_{\rm CRAC}$ by any CIF-like molecule has not been reported. As reported in abstract form (180), CIF-containing extracts fail to activate $I_{\rm CRAC}$ in whole cell recordings from Jurkat T cells. Instead, CIF induced nonselective currents that are not normally observed in these cells, although it

also upregulated I_{CRAC} activated by thapsigargin, suggesting a modulatory rather than a causal role for CIF.

B) GUANOSINE 3′,5′-CYCLIC MONOPHOSPHATE. In rat pancreatic acinar cells, Bahnson et al. (6) proposed that guanosine 3′,5′-cyclic monophosphate (cGMP) activated a store-operated Ca^{2+} current. Both muscarinic receptor stimulation and inclusion of $InsP_3$ in the patch pipette activated the same current through a step requiring an elevation in cGMP levels. They proposed that cGMP was the signal coupling stores to Ca^{2+} channels in the plasma membrane.

A similar conclusion was reached by Xu et al. (245) in studies on both intact and permeabilized pancreatic acinar cells. They found that pharmacological tools directed against both nitric oxide (NO) synthase and guanylyl cyclase inhibited store-operated Ca²⁺ entry, but influx could be restored by a membrane-permeable analog of cGMP. Furthermore, agents that depleted stores all increased cGMP levels, and this occurred with a low concentration of Ca²⁺ in the external solution. Nitric oxide synthase was only weakly activated by a large rise in cytosolic Ca²⁺, but depletion of stores was very effective in activating the enzyme. They suggested that depletion of stores activated NO synthase, which then stimulated cytosolic guanylyl cyclase thereby generating cGMP. Guanosine 3',5'-cvclic monophosphate then activated cGMPdependent protein kinase, which activated Ca²⁺ influx.

Studies in human colonic epithelial cells by Bischof et al. (19) revealed that both NO and cGMP were important regulators of store-operated Ca²⁺ influx. Although these agents had only weak effects on cytosolic Ca²⁺ when stores were full, they increased the amount of Ca²⁺ influx after store depletion. This would indicate that these agents are important regulatory factors rather than constituting the activation mechanism itself. Interestingly, the effects of an NO donor (sodium nitroprusside) were found to be dose dependent in that low concentrations enhanced Ca²⁺ influx, whereas higher concentrations were inhibitory. A similar observation was made by Xu et al. (245), who found that low concentrations of cGMP increased store-operated Ca²⁺ influx, whereas higher concentrations of the cyclic nucleotide subsequently inhibited influx.

A subsequent report by Gilon et al. (63) failed to

observe any effect of cGMP on thapsigargin-evoked Ca²⁺ influx in both rat pancreatic acinar cells and Jurkat T cells. Similarly, in *Xenopus* oocytes and RBL cells, cGMP was without effect on store-operated Ca²⁺ influx (53, 161).

C) CYTOCHROME P-450 MESSENGERS. Using Mn²⁺ to monitor Ca²⁺ entry, Garcia-Sancho and colleagues (3) reported that store-operated Ca²⁺ influx in suspensions of rat thymocytes, Ehrlich ascites tumor cells, human platelets, and neutrophils was abolished by imidazole antimyotics like econazole that inhibit cytochrome P-450. They also found that calmodulin antagonists increased Mn²⁺ influx in cells whose stores were full. This influx was prevented by econazole. The calmodulin antagonists had no effect on Mn²⁺ uptake if applied after the stores had been depleted. They proposed that depletion of stores removes inhibition by the Ca²⁺-calmodulin complex on microsomal cytochrome P-450 activity. This then results in the generation of a messenger that travels from the stores to the plasma membrane, opening the store-operated Ca²⁺ channels. In agreement with this were their findings that store-operated Ca²⁺ influx had a Q₁₀ of 4-5, characteristic of enzymatic reactions and that the time course of Ca2+ influx was determined by a short-lived messenger (137).

Building on this work, Graier et al. (67) found that agents that interfered with cytochrome P-450 functioning affected store-operated Ca^{2+} influx in fura 2-loaded endothelial cells. They observed that 5,6-epoxyeicosatrienoic acid, synthesized from arachidonic acid by cytochrome P-450 monooxygenase, activated Ca^{2+} influx in the absence of store depletion. This influx was indistinguishable from bradykinin receptor-stimulated Ca^{2+} entry, but unlike bradykinin-stimulated Ca^{2+} influx, it was insensitive to cytochrome P-450 inhibitors. They suggested that depletion of stores activated cytochrome P-450 monooxygenase, resulting in the generation of the diffusible messenger 5,6-epoxyeicosatrienoic acid. This latter molecule, or a metabolite derived from it, activated Ca^{2+} influx.

Subsequent experiments using econazole revealed that it possessed numerous pharmacological actions not related to effects on cytrochome P-450. It blocks voltagegated Ca²⁺ channels (238), Ca²⁺-dependent K⁺ channels (4), and most ominously in mast cells, it blocks I_{CRAC} as well as nonselective cation channels and Cl⁻ channels all over a similar concentration range (57). The inhibitors can therefore directly change the membrane potential, and hence the driving force for Ca²⁺ influx. Because the experiments using cytochrome P-450 inhibitors were conducted on non-voltage-clamped cells, effects on membrane potential cannot be ruled out. Furthermore, arachidonic acid and its metabolites regulate several types of ionic channels including K⁺ currents (242), again raising the concern that their effects on store-operated Ca²⁺ influx might be mediated indirectly through changes in electrical driving force for Ca²⁺ influx.

D) SMALL-MOLECULAR-WEIGHT G PROTEINS. Fasolato et

al. (53) observed that dialysis of RBL cells with nonhydrolyzable analogs of GTP [guanosine 5'-O-(3-thiotriphosphate) (GTP γ S) and 5'-guanylylimidodiphosphate] before depletion of stores prevented the activation of I_{CRAC} by ionomycin. Alone, GTP γ S did not activate I_{CRAC} , whereas AlF₄, an activator of heterotrimeric G proteins but not of small G proteins, did evoke the current. This led them to suggest that a small G protein was involved in the activation mechanism. A similar conclusion was reached by Bird and Putney (17), who injected GTP γ S directly into single lacrimal gland cells. They found that thapsigargin-evoked Ca^{2+} influx was abolished by preinjection of GTP γ S or guanosine 5'-O-(2-thiodiphosphate) (GDP β S). In rat megakaryocytes, Somasundaram et al. (214) found that GTP γ S prevented the activation of I_{CRAC} to ionomycin and also suggested that a small G protein was involved. Fasolato et al. (53) and Bird and Putney (17) both found that GTP could overcome the inhibitory effects of GTP γ S. Both groups also reported that, once activated, Ca²⁺ influx was less sensitive to $GTP\gamma S$. The small-molecular-weight G protein is not known. Parekh and Penner (159) tested several possible candidates (ras, rac, rho, arf, cd42) but none activated I_{CRAC} nor interfered with the ability of ionomycin to evoke the current (159).

Petersen and Berridge (169) reported that $GTP\gamma S$ inhibited store-operated Ca^{2^+} influx in *Xenopus* oocytes, but this was prevented by staurosporine, a broad protein kinase inhibitor. They concluded that the inhibitory actions of $GTP\gamma S$ were due to activation of protein kinases, like protein kinase C, rather than due to a small G protein (169). However, direct comparison with the results of Fasolato et al. (53) and Bird and Putney (17) is not straightforward. In the oocyte experiments, $GTP\gamma S$ was added after Ca^{2^+} influx had been irreversibly activated. Petersen and Berridge (169) did not examine the effects of $GTP\gamma S$ on the activation mechanism, which was the focus of the experiments of Fasolato et al. (53) and Bird and Putney (17).

E) VESICLE FUSION. Because small G proteins are main players in vesicular trafficking, it is not surprising that vesicular fusion has been implicated in the activation of store-operated Ca²⁺ influx. There is precedence for such a mechanism in the recruitment of glucose transporters to the plasma membrane after stimulation with insulin via vesicular transport and fusion (73, 216). In analogy, Somasundaram et al. (214) have suggested that CRAC channels are stored in vesicles and then inserted into the plasma membrane of megakaryocytes after depletion of stores. This was based on the effects of the drug primaquine, which is known to inhibit vesicular transport. Pretreament with primaquine substantially reduced the ability of ionomycin to activate I_{CRAC} , whereas application of primaquine after I_{CRAC} had activated resulted in less block of current. From the effects of GTP γ S, they suggested a diffusible small G protein was involved, and this regulated the primaguine-sensitive vesicular transport.

F) HETEROTRIMERIC G PROTEINS. Barritt and colleagues (13, 56) observed that the receptor agonist vasopressin, GTPγS, or thapsigargin all failed to evoke Ca²⁺ inflow in hepatocytes isolated from rats treated with pertussis toxin. In cells from control rats, these agents activated store-operated Ca^{2+} influx. Injection of $GDP\beta S$ into the cells also inhibited thapsigargin-stimulated Ca²⁺ entry (13). They suggested that a pertussis toxin-sensitive heterotrimeric G protein was required for store-operated Ca²⁺ influx in hepatocytes. Injection of antibodies raised against the carboxy-terminal of the α -subunit of $G_{i,2}$, as well as direct injection of the synthetic $G\alpha_{i-2}$ peptide, abolished agonist- and thapsigargin-induced Ca²⁺ influx (14). The antibody did not affect agonist-induced Ca²⁺ release but, surprisingly, did reduce the amount of Ca²⁺ released by thapsigargin. Immunofluorescence studies revealed that $G\alpha_{i-2}$ was distributed in the cytoplasm whereas $G\alpha_{011}$, which links receptors to phospholipase $C-\beta$, was exclusively located in the plasma membrane. The cytoplasmic distribution of $G\alpha_{i-2}$ would suggest it diffuses from stores to Ca²⁺ channels in the plasma membrane.

From studies on granulocytes, Jaconi et al. (86) also favored a role for a heterotrimeric G protein. They found that GTP γ S blocked Ca²⁺ influx induced both by the receptor agonist formyl-Met-Leu-Phe and thapsigargin, without compromising the Ca²⁺ release induced by these agents. The inhibitory effect of GTP γ S was not mimicked by GDP β S. Another heterotrimeric G protein activator, NaF, could substitute for GTP γ S in inhibiting Ca²⁺ influx, leading them to suggest that the GTP-sensitive step encompassed a heterotrimeric G protein.

The experiments on hepatocytes and granulocytes were carried out using fura 2, under conditions where the membrane potential was not clamped. Because many channels are gated by heterotrimeric G proteins, like the inwarly rectifying K channel (31), it is likely that membrane potential will not stay constant. Additionally, effects of protein kinases on the Ca²⁺ influx pathway need to be considered (although protein kinase C was ruled out in the granulocyte experiments of Jaconi et al., Ref. 86). Finally, it is not clear whether store-operated Ca²⁺ influx is the only Ca²⁺ entry pathway in these cells. Llopis et al. (108) reported two independent influx pathways activated by receptor agonist in hepatocytes, only one of which was store activated.

G) TYROSINE KINASE. Tyrosine kinases are thought to be involved in a variety of different signal transduction pathways. Vostal et al. (241) provided the first evidence that tyrosine phosphorylation might be an important step in the activation of store-operated ${\rm Ca^{2^+}}$ influx. From studies in platelets, they found that procedures that activated ${\rm Ca^{2^+}}$ influx all caused tyrosine phosphorylation of a 130-kDa protein and to lesser extents 80- and 60-kDa proteins. The tyrosine kinase was specifically activated by ${\rm Ca^{2^+}}$ release from the stores because phosphorylation occurred

in the absence of external Ca²⁺ and was prevented by preincubating the cells with BAPTA acetoxymethyl ester (AM). Chilling the platelets also induced phosphorylation of the 130-kDa protein, apparently because the Ca²⁺-ATPases on the stores ceased to function at the low temperature. Rewarming the chilled platelets in the absence of external Ca²⁺ did not result in dephosphorylation of the protein. Dephosphorvlation only occurred if the cells were rewarmed in Ca²⁺-containing solution, and this dephosphorylation could be prevented if thapsigargin was present. They suggested that the increased cytosolic Ca²⁺ after depletion of stores activated a cytosolic diffusible tyrosine kinase that phosphorylated a 130-kDa protein, which then resulted in Ca²⁺ influx. Refilling of the stores activated a protein tyrosine phosphatase that then dephosphorylated the 130-kDa protein resulting in cessation of Ca^{2+} influx.

The role of tyrosine kinases in platelets was also examined by Sage's group (196, 197), who tested the effects of kinase inhibitors on store-operated Ca²⁺ influx. They found that two tyrosine kinase inhibitors reduced Ca²⁺ influx in response to either receptor stimulation or thapsigargin, without affecting the Ca²⁺ release phase (196, 197). They observed tyrosine phosphorylation of the 130-kDa protein after store depletion, and this was prevented by the tyrosine kinase inhibitors. They also observed that tyrosine dephosphorylation correlated with the extent of store refilling, compatible with the notion that the refilling process somehow activated a tyrosine phosphatase (88).

Reports suggesting a role for tyrosine kinases in store-operated Ca²⁺ influx are not confined to platelets. Villereal and co-workers (102) found that depletion of stores in human foreskin fibroblasts resulted in increased protein tyrosine phosphorylation. Again, predominant labeling was observed on a band corresponding to a protein of 130 kDa, remarkably similar to the observations in platelets. Store-operated Ca²⁺ influx in response to the receptor bradykinin or to thapsigargin was suppressed by tyrosine kinase inhibitors, whereas Ca²⁺ release was unaffected.

One of the key tenets of the tyrosine kinase model is that the activation of the relevant kinase requires a rise in cytosolic $\mathrm{Ca^{2+}}$. Recall that in platelets, preloading of the cells with BAPTA-AM abolished tyrosine phosphorylation (241). In whole cell patch-clamp experiments on the other hand, where cytosolic $\mathrm{Ca^{2+}}$ is strongly buffered, I_{CRAC} can activate in the absence of a global increase in cytosolic $\mathrm{Ca^{2+}}$. This might argue against a role for a $\mathrm{Ca^{2+}}$ -dependent tyrosine kinase in these cells. In platelets, the tyrosine kinase model predicts that an increase in cytosolic $\mathrm{Ca^{2+}}$, in the absence of store depletion, should activate store-operated $\mathrm{Ca^{2+}}$ influx. It would be important to test this, perhaps in the presence of a tyrosine phosphatase inhibitor.

A further concern is that tyrosine kinases can regu-

late other ionic channels, including K⁺ currents (79). Hence, inhibition of the kinases could affect the membrane potential, thereby altering the electrical gradient for Ca²⁺ influx. This would give the erroneous impression that the store-operated Ca²⁺ influx pathway itself was affected. Finally, high concentrations of the tyrosine kinase inhibitors are required and, at these doses, they are unlikely to be specific. One commonly used tyrosine kinase inhibitor, genistein, has been shown to block pharmacologically. In *Xenopus* oocytes, Parekh (155) has found that genistein inhibits the activation of store-operated Ca²⁺ influx. However, this effect is not mimicked by two structurally unrelated tyrosine kinase inhibitors, suggesting that the inhibition by genistein might not be related to tyrosine kinase block (unpublished observations).

H) CALCIUM/CALMODULIN-DEPENDENT KINASE. Although it has now been firmly established that a rise in cytosolic free Ca^{2+} is not necessary for the activation of I_{CRAC} , Ca^{2+} activated kinases might regulate certain aspects of Ca²⁺ influx. In Chinese hamster ovary (CHO) cells, Gailly et al. (60) observed that calmodulin inhibitors attenuated the amount of Ca²⁺ influx that followed after depletion of agonist-sensitive stores either with a receptor agonist or thapsigargin. They suggested that Ca²⁺/calmodulin kinase might regulate store-operated Ca²⁺ influx in these cells. The presence of a store-operated Ca²⁺ current in CHO cells has not been described, and it is conceivable that these cells express Ca²⁺-activated influx pathways like Ca²⁺-activated Ca²⁺-permeable channels. It is interesting to recall the work of Braun and Schulman (23), who found that a Ca²⁺ activation of a Ca²⁺-permeable channel in human epithelial cells was mediated by Ca²⁺/calmodulin kinase (23).

In bovine vascular endothelial cells, inclusion of calmodulin in the patch pipette slowed the rate of activation of a store-operated Ca^{2+} current evoked by thapsigargin, reduced its peak amplitude, and accelerated its rate of inactivation (231). The effects of calmodulin were prevented by increasing the EGTA concentration in the patch pipette solution, indicating that the calmodulin actions required a rise in Ca^{2+} . How calmodulin is acting and whether it is through a kinase is not known.

I) PROTEIN KINASE C. Activation of phospholipase C will result in the production of both $InsP_3$ and diacylglycerol. Diacylglycerol can then activate various isozymes of protein kinase C. Although protein kinase C can inactivate I_{CRAC} (see sect. IIIC4), it has been suggested that the enzyme activated store-operated Ca^{2+} influx. Bode and Goeke (21) found that thapsigargin evoked only transient Ca^{2+} influx in populations of RINm5F cells, an insulinoma cell-line derived from pancreatic β -cells, preloaded with fura 2. Pretreatment with phorbol ester increased the amplitude and slowed the decay of Ca^{2+} influx, without altering the amount of Ca^{2+} released by thapsigargin. On the other hand, phorbol ester alone had no effect in the ab-

sence of store depletion, which suggests that protein kinase may not activate $I_{\rm CRAC}$ directly.

Parekh and Penner (159) found that pretreatment of RBL cells with bisindolylmaleimide, a specific protein kinase C inhibitor, had no effect on the activation of $I_{\rm CRAC}$, suggesting that protein kinase C was not involved in the activation mechanism in these cells.

J) STAUROSPORINE-SENSITIVE STEP. Although protein kinase C appears not to be involved in the activation of I_{CRAC} , Parekh and Penner (159) found that pretreatment of RBL cells with the broad protein kinase inhibitor staurosporine prevented the activation of I_{CRAC} by InsP₃. Identical results were obtained when ionomycin was used to deplete the stores, ruling out an inhibitory action of staurosporine on Ca²⁺ release. Application of staurosporine, once I_{CRAC} had been activated, did not have any inhibitory effect on the current. This would argue against a pharmacological action of staurosporine on CRAC channels themselves. This also would suggest that, once activated, I_{CRAC} becomes independent of its activation mechanism. The inhibitory effects of staurosporine were not mimicked by bisindolylmaleimide, a relatively specific inhibitor of protein kinase C. Unraveling the molecular target of staurosporine might provide clues into the activation mechanism of $I_{\rm CRAC}$ in RBL cells.

K) DIRECT COUPLING. Based on an analogy with excitation-contraction coupling in skeletal muscle, where the ryanodine release channels of the sarcoplasmic reticulum physically interact with a subset of voltage-dependent Ca²⁺ channels in the plasma membrane, Irvine (82) postulated a similar mechanism for store-operated Ca²⁺ influx. In his hypothesis, the InsP₃ receptor on the endoplasmic reticulum physically coupled to an InsP4 receptor in the plasma membrane. Interaction between these two proteins then controlled the Ca²⁺ influx pathway. A modified version of this model was forwarded by Berridge (10), who also proposed the involvement of InsP₃ receptors on the stores physically linked to the store-operated Ca²⁺ channels in the plasma membrane, but without the latter necessarily being InsP₄ receptors. The crux of this conformational-coupling model is that depletion of the Ca²⁺ stores changes the conformation of the InsP₃ receptor, and this leads directly to opening of the Ca²⁺ channels. So far, there has been no direct evidence in support of either conformational-coupling model. However, two indirect arguments have been cited: the analogy with excitation-contraction coupling and the presumed coupling mechanism of the trp protein.

As discussed above, the conformational-coupling models are based on an analogy with the ryanodine receptor-L-type Ca²⁺ channel complex in skeletal muscle. It therefore has a precedence in nature. It is important to keep in mind that skeletal muscle is a highly specialized tissue that contracts on a millisecond time scale. It therefore requires rapid signal transmission that can only be

provided on this time scale by direct protein-protein coupling. In both cardiac and smooth muscles, which contain similar ryanodine-sensitive and L-type Ca²⁺ channels to those in skeletal muscle, direct coupling does not occur. Instead, Ca²⁺ influx and Ca²⁺ release communicate via a diffusible messenger, namely, Ca²⁺. Smooth muscle in particular is well-known for its slow responses, with contractions developing over a time of seconds. Such slow Ca²⁺-dependent responses are routinely found in nonexcitable cells too. The endoplasmic reticulum in some smooth or cardiac muscle can lie very close to the plasma membrane at discrete points, yet skeletal muscle-type excitation-contraction coupling does not occur (59). The fact that the two membranes can be close therefore does not necessarily indicate a direct protein-protein interaction.

The TRP channel cloned from *Drosophila* photoreceptors is considered to be the first recombinant channel that can be activated by store depletion (see sect. VI). Furthermore, an antibody to trp in native Drosophila photoreceptors has localized the channel to the base of the rhabdomeres (178). This is a region where the plasma membrane and the endoplasmic reticulum lie very close to each other. It has been argued that this result is consistent with conformational coupling. However, it is not clear whether trp is indeed a store-operated Ca²⁺ channel in the photoreceptor (see sect. VI). Furthermore, a study employing different antibodies raised against trp failed to observe a preferential localization to the base of the rhabdomeres. This was used as an argument against conformational coupling between trp and a protein on the stores in the *Drosophila* photoreceptors (149).

The above arguments are balanced by some experimental findings that are difficult to reconcile with conformational coupling, which would be expected to occur rather quickly if protein-protein interactions took place. One of these findings is the significant delay after depletion of stores and the rather slow time course of of activation of $I_{\rm CRAC}$ (78). In exocrine gland cells, ${\rm Ca^{2^+}}$ release was over within 5 s of agonist exposure, but ${\rm Mn^{2^+}}$ influx did not commence for a further 30 s (209). A similar delay was observed when stores were emptied with thapsigargin. This delay was not due to ${\rm Ca^{2^+}}$ inhibition of the ${\rm Ca^{2^+}}$ influx pathway.

4. Assessment of models

The idea of a retrograde signal coming from the stores was first proposed by Takemura et al. (219). They suggested that an unknown second messenger was released from the stores which then activated Ca^{2+} influx. Three lines of evidence, all independently, point to a role for a retrograde messenger system in the activation of store-operated Ca^{2+} influx.

1) Slow activation of Ca²⁺ influx. In whole cell patch-

clamp experiments, $I_{\rm CRAC}$ activates slowly with a time constant of 20–30 s (78, 128, 252). Similarly, in fura 2-loaded cells, ${\rm Ca^{2+}}$ influx switches on several seconds after the ${\rm Ca^{2+}}$ release phase is over (125). This time course is characteristic of biochemical signaling pathways.

2) Patch excision experiments. In *Xenopus* oocytes, Parekh et al. (161) recorded store-operated Ca²⁺ influx in cell-attached patches. Excision of the patch from the cell membrane resulted in rapid loss of the current, and this was not prevented by inclusion of InsP₃ in the bath solution. However, because of the large size of the oocyte, the excised patch could be reinserted into the cell at a spatially different point from where it had been excised, and the current quickly returned. This would suggest that the activation mechanism encompasses a somewhat mobile molecule, although its size was unknown. In epidermal cells, Lückhoff and Clapham (114) made a similar observation and showed that neither InsP₃ nor InsP₄, alone or in combination, prevented the rapid rundown of the excised patch current. In endothelial cells, Vaca and Kunze (234) found that excision of a cell-attached patch containing a store-operated current also ran down quickly after patch excision. It would be important to see whether the currents in epidermal and endothelial cells also return on reinserting the excised patch back into the parent cell.

3) Whole cell dialysis experiments. Fasolato et al. (53) found that the activation mechanism of $I_{\rm CRAC}$ washed out of the cell during whole cell patch-clamp experiments. As the time of whole cell recording increased, depletion of stores activated less I_{CRAC} . A similar conclusion was reached by Somasundaram et al. (214) from studies on rat megakaryocytes. In both cases, the molecule was estimated to be a small, diffusible protein. On the other hand, no such washout was observed in another study (157), where the most notable deviation in experimental conditions from Fasolato et al. (53) was the use of EGTA as the main Ca²⁺ buffer and inclusion of higher intracellular ATP levels. It remains to be determined more systematically which experimental parameters are responsible for the apparent washout or lack thereof in whole cell recordings.

Some features of store-operated Ca²⁺ entry are not easily accommodated in a scheme involving a second messenger-gated mechanism. For example, after depletion of stores in Ca²⁺-free solution, readmission of external Ca²⁺ results in Ca²⁺ influx even if Ca²⁺ is readmitted several minutes after the stores have been depleted. Such experiments were first carried out by Takemura and Putney (219) and were used as evidence against a direct role for inositol polyphosphates in Ca²⁺ influx, since they would have been metabolized during such long time intervals. One might expect the same to be true for a second messenger, in that it would be metabolized and therefore would not be able to activate Ca²⁺ influx for extended periods of time. Although the long time course of acti-

vated store-operated Ca²⁺ channels might argue against a such a messenger, several pertinent points need to be borne in mind. First, the long time course does not argue against a messenger itself, but against a rapidly metabolizable one. In fact, a rapidly metabolizable messenger could conceivably activate a more stable molecule like a protein kinase. This would introduce a longer time course in the actions of the initial signal and is analogous to the adenosine 3',5'-cyclic monophosphate (cAMP)/protein kinase A system. Short-term effects arise from cAMP actions and longer terms effects through protein phosphorylation. Second, the breakdown of one putative influx factor, CIF, is Ca²⁺ dependent. High cytosolic Ca²⁺ degrades the molecule (188). In low Ca²⁺, as would occur when cells are maintained in Ca²⁺-free solution for several minutes after depletion of stores, metabolism might be reduced.

The only study to address the time course of storeoperated Ca²⁺ influx was conducted by Montero et al. (137). They concluded that the time course of Ca²⁺ entry was determined by a cytosolic labile message and not by the time course of store refilling. A further point of relevance to this is that the time course of I_{CRAC} might become independent of the activation mechanism. Parekh and Penner (159) found that pretreatment with staurosporine prevented the activation of I_{CRAC} , but staurosporine had no effect when applied after the current had developed. This would mean that, once activated, I_{CRAC} becomes independent of its activation mechanism. Recall the data of Fasolato et al. (53) and Bird and Putney (17) who found that GTP γ S prevented the activation of I_{CRAC} only if applied before activation of the current. It had no effect once I_{CRAC} had developed. Hence, the long time course of active store-operated Ca²⁺ channels does not necessarily argue against a second messenger.

An attractive alternative to a second messenger acting as a direct ligand, and which could more easily account for the long-lived activation of store-operated ${\rm Ca^{2+}}$ entry, would be a covalent modification of the channels by phopsphorylation/dephosphorylation events or regenerative G protein cycles. Clearly, the substantial delay in the activation of $I_{\rm CRAC}$ and its slow development would be more consistent with a biochemical step linking store depletion to ${\rm Ca^{2+}}$ influx rather than a direct coupling model. Unfortunately, we are faced with a plethora of suggested mechanisms in this area, but no clear candidate mechanism has been demonstrated.

The major contender to the above-mentioned signaling cascades is the conformational coupling model. This model predicts that the $InsP_3$ receptor on the stores is physically coupled to CRAC channels. If this were true, then knock-out of the $InsP_3$ receptor should abolish store-operated Ca^{2+} influx. This was directly tested by Jayaraman et al. (87) in T lymphocytes. They stably transfected Jurkat T cells with an antisense oligonucleotide to the type 1 $InsP_3$ receptor cDNA. Receptor-evoked Ca^{2+} re-

lease and influx were abolished, as expected if $InsP_3$ was unable to deplete stores. However, thapsigargin was still able to evoke Ca^{2+} influx. Hence, the type $1 InsP_3$ receptor, which was essential for Ca^{2+} release, was not necessary for Ca^{2+} influx. This important result has led Berridge to propose that the type $1 InsP_3$ receptor controls Ca^{2+} release, whereas the type $3 InsP_3$ receptor specifically couples to CRAC channels in the plasma membrane (11).

Is this model feasible? This question has been addressed by recent studies in *Xenopus* oocytes (39) and T lymphocytes (92), where overexpression of the type 3 InsP₃ receptor was found to substantially increase Ca²⁺ influx into the cell. In the T cells, this was associated with apoptosis, suggesting a crucial role for abnormalities in the type 3 receptor in disease. At first sight, these results would be consistent with the conformational model that involves type 3 InsP₃ receptors. However, Khan et al. (92) concluded that the type 3 receptor was inserted into the plasma membrane itself. Hence, it would function as a ligand-gated channel, being directly activated by cytosolic InsP₃ and conducting Ca²⁺ into the cell. It would not therefore constitute a store-operated pathway nor would the InsP₃ receptor function as a Ca²⁺ sensor in the stores. In the oocytes, Delisle et al. (39) showed that the type 3 InsP₃ receptor was not expressed in control cells. If it played a crucial role in store-operated Ca²⁺ entry, one might have expected it to be present. In any case, these experiments indicate that InsP₃ receptor subtypes might fulfill different functions.

It is worth bearing in mind that individual CRAC channels support only around an approximately femtoampere current (252). This is a very small amount, three orders of magnitude less than their voltage-dependent counterparts. To account for the macroscopic current in Jurkat T lymphocytes, it has been estimated that there must be >10,000 functional CRAC channels in the plasma membrane (252). This is a very large number. Voltagedependent Ca²⁺ channels are present in copies of several hundred to 1,000-fold (single-channel current of 1 pA, whole cell current of several hundred picoamperes). Even if a protein on the stores (ostensibly the type 3 InsP₃ receptor) directly coupled to more than one CRAC channel, one would predict several thousand physical links, since there does not appear to be cooperativity in the activation mechanism of individual CRAC channels. Detailed immunocytochemical studies combined with electron microscopy will be helpful in examining this.

To summarize, the activation mechanism has remained largely elusive, although a confusing number of mechanisms have been proposed. It is not clear how much of the confusion can be attributed to the different experimental techniques employed. It is evident from the multitude of proposed activation mechanisms, either that there are indeed multiple mechanisms of activation specific to the cell type or that the mechanism is a general one, but

is under control of multiple regulatory steps. Because there now appears to be a diverse family of store-operated Ca^{2+} currents, with presumably subtly different physiological roles, one might venture to suggest that different cell types are endowed with different mechanisms for activating store-operated Ca^{2+} influx. Although this is a viable possibility, one cannot help but suspect that there is a ubiquitous mechanism. Virtually every cell throughout the phylogenetic tree releases Ca^{2+} from intracellular stores, and this is achieved by a ubiquitous messenger, $InsP_3$. Distinct patterns of Ca^{2+} release are accomplished, not by using different messengers, but rather by an elegant series of mechanisms that fine-tune the ability of the ubiquitous messenger to release Ca^{2+} .

C. Inactivation Mechanisms of I_{CRAC}

Several mechanisms that serve to inactivate $I_{\rm CRAC}$ have been characterized. They involve rapid and slow mechanisms and may be effective at different sites of the apparently complex signaling pathway between intracellular stores and plasma membrane channels.

1. Inactivation by Ca^{2+}

Calcium can regulate I_{CRAC} through three spatially and temporally distinct mechanisms. Like their voltage-dependent counterparts, CRAC channels are subject to feedback inactivation by Ca²⁺ from the cytosolic side. Hoth and Penner (78) found that, once I_{CRAC} had reached its maximum activity in rat mast cells dialyzed with EGTA, hyperpolarizing pulses resulted in an instantaneous increase in current followed by partial inactivation with time constants of ~ 10 – 100 ms (78). This inactivation was more effectively suppressed by inclusion of the fast Ca²⁺ chelator BAPTA in the pipette solution instead of EGTA. They proposed that CRAC channel inactivation resulted from the local rise of intracellular free Ca²⁺ as Ca²⁺ flowed into the cell. This would constitute a local fast negative feedback mechanism. Fast Ca²⁺-feedback inactivation may fulfill an important role in controlling the time course and extent of Ca²⁺ influx and is likely to play an important role in determining the spatiotemporal pattern of Ca²⁺ signaling.

Zweifach and Lewis (253) showed that fast inactivation could also be observed in lymphocytes and was independent of the magnitude of the whole cell $\mathrm{Ca^{2+}}$ current. This implies that fast inactivation is specifically associated with the opening of individual $\mathrm{Ca^{2+}}$ channels. Fast inactivation was specific to $\mathrm{Ca^{2+}}$ because it was much less pronounced when $\mathrm{Ba^{2+}}$ was the charge carrier. Fast inactivation and recovery from this inactivation were both biexponential processes with fast and slow time constants in the range of 10 and 100 ms, respectively. They calculated that the $\mathrm{Ca^{2+}}$ -binding site was only a few nanometers from the pore. Such a local site of action suggests that CRAC channels are

insensitive to global increases in cytosolic Ca²⁺ provided these excursions are not too large and if there is no store refilling (see sect. III*C2*). If global cytosolic Ca²⁺ is raised too high, as seen by photolytic release of Ca²⁺ from caged precursors, CRAC channels can quickly inactivate.

With the use of the two-electrode voltage-clamp technique in Xenopus oocytes, where Ca^{2+} influx is measured indirectly through the activity of Ca^{2+} -dependent Cl^- currents, Ca^{2+} inactivation of Ca^{2+} entry has been observed both after receptor stimulation and exposure to thapsigargin (155, 168).

2. Store refilling

If depletion of stores turns on I_{CRAC} , it seems likely that refilling of stores will turn off the current. Surprisingly, few studies have directly addressed this critical aspect of store-operated Ca²⁺ influx. Jacob (85) examined the temporal relationship between store refilling and Ca²⁺ entry in human endothelial cells, using the size of the histamine-evoked Ca2+ transient as an indicator of Ca2+ release and Mn²⁺ quenching of fura 2 to follow Ca²⁺ entry. He (85) found a close correlation between the Ca²⁺ content of the histamine-sensitive store and the time course of Ca²⁺ entry. A similar conclusion was reached by Montero et al. (136), from studies on human leukemia cells (HL-60 and U-937 types). They evoked Ca²⁺ influx by readmitting Ca²⁺ to cells whose stores had been depleted by prolonged incubation in Ca²⁺-free solution. The content of the stores was assessed using the Ca²⁺ ionophore ionomycin. Montero et al. (136) found a good link between the amount of Ca²⁺ influx and the refilling of the stores, which refilled with a half time between 24 and 90 s depending on the cell type.

To date, only in T cells has it been shown that refilling of stores turns off I_{CRAC} (254). With 1.2 mM EGTA in the pipette solution, I_{CRAC} inactivated within 100 s. This inactivation was partially reversed by the presence of thapsigargin, which would prevent refilling of the stores. Hence, store refilling contributes to the inactivation of I_{CRAC} . Although store refilling can contribute to the time course of I_{CRAC} , several issues are still unclear. How does refilling of the stores inactivate I_{CRAC} ? Does refilling simply remove the activating signal, or is an additional inhibitory mechanism specifically mobilized? Is the store that inactivates I_{CRAC} the same as the InsP₃-sensitive store that activates the current? Intracellular Ca²⁺ stores are known to fuse with each other in a GTP-dependent manner (224). It is conceivable that a subtype of InsP₃-insensitive Ca²⁺ stores first refills and then fuses with the InsP₃ stores, thereby replenishing the latter of their Ca²⁺ content.

3. Calcium-dependent but store-independent inactivation

Experiments on T lymphocytes suggest a third pathway that inactivates CRAC channels. Zweifach and Lewis

(254) found that even in the presence of thapsigargin I_{CRAC} still inactivated by \sim 50%. This means that I_{CRAC} can inactivate substantially even when stores cannot refill. This inactivation was Ca²⁺ dependent but could be separated from the fast Ca²⁺-dependent inactivation operating on a milliseconds time scale. Although a role for protein phosphatases was unlikely, it would be interesting to see whether store-independent inactivation involves a protein kinase. A similar slow Ca²⁺-dependent but store-independent inactivation is observed in NIII-3T3 cells (110) and in *Xenopus* oocytes (Parekh, unpublished observations). In the NIH-3T3 cells, two differences were observed compared with the results in the lymphocytes. First, okadaic acid had no effect on the slow inactivation, and second, a cytoplasmic rise in Ca²⁺ was not involved. Louzao et al. (110) suggested that slow inactivation arose from either Ca²⁺ binding to an external site on CRAC channels or within the pore such that the Ca²⁺ was inaccessible to BAPTA. The molecular processes that underlie this storeindependent mechanism are currently not known, and future experiments need to address this issue.

Hence, three independent processes, all activated by $\mathrm{Ca^{2^{+}}}$, function to control the time course of CRAC channels. Fast inactivation operates on a milliseconds time scale, whereas the slower store-dependent and -independent mechanisms operate over several tens of seconds. These are likely to play important roles in determining the temporal properties of $\mathrm{Ca^{2^{+}}}$ entry and hence shaping the pattern of $\mathrm{Ca^{2^{+}}}$ signaling after receptor stimulation. It is important to note that the physiological amplitude and time course of I_{CRAC} are likely to be much smaller and shorter than suggested by the majority of biophysical experiments that are conducted with high concentrations of free EGTA or BAPTA in the recording pipette.

4. Protein kinase-mediated inactivation

A very important control mechanism that is used in a variety of biological systems is exerted through protein kinase-mediated phosphorylation. Store-operated Ca^{2+} entry is subject to such control.

Protein kinase C has disparate effects on store-operated Ca²⁺ influx, and this seems to be cell type specific. Early experiments employing fura 2 to track Ca²⁺ influx in suspensions of thyroid cells (228) and human neutrophils (138, 140) found that stimulation of protein kinase C by phorbol esters could attenuate Ca²⁺ influx evoked by thap-sigargin and receptor agonists. These studies, however, could not rule out possible effects of phorbol esters on membrane potential. For example, it has been shown that receptor agonists and phorbol ester depolarizes neutrophils (98), which would also lead to a decrease in Ca²⁺ entry due to reduced driving force, but not necessarily through inactivation of the influx channels.

In RBL cells, I_{CRAC} inactivates when ATP is included

in the patch pipette solution, and this inactivation is more pronounced when ATP is replaced by adenosine 5'-O-(3-thiotriphosphate) (ATP γ S), an ATP analog that is readily used by protein kinases (158). Protein phosphatases cannot easily remove the thiophosphate moiety, which therefore results in "irreversible" protein phosphorylation. The effects of ATP γ S are not mimicked by 5'-adenylylimidodiphosphate, another nonhydrolyzable analog but which is not utilized by kinases. The inactivation is accelerated by stimulation of protein kinase C and reduced in the presence of protein kinase C inhibitors, indicating a role for this kinase in the inactivation process.

In *Xenopus* oocytes, protein kinase C exerts a biphasic action. Acute stimulation with phorbol ester initially enhances thapsigargin-evoked Ca^{2+} entry, when monitored through the endogenous Ca^{2+} -dependent Cl^- current (168). Along similar lines, the time course of receptorstimulated Ca^{2+} influx is substantially prolonged in the presence of $ATP\gamma S$ but not 5'-adenylylimidodiphosphate (160). Sustained stimulation of protein kinase C subsequently inactivates Ca^{2+} entry (168). The initial potentiation of Ca^{2+} influx by protein kinase C has not been observed in the other cell types where the kinase exerts an action on Ca^{2+} entry.

Because protein kinase C will be activated by receptors that increase $\rm Ins P_3$ levels, it can provide a powerful feedback mechanism on $\rm Ca^{2+}$ influx. Parekh and Penner (158) have found in RBL cells that the ability of certain receptor agonists to evoke $\rm Ca^{2+}$ entry is determined, at least in part, by the extent of protein kinase C stimulation. Activation of adenosine $\rm A_3$ receptors that couple to the phosphoinositide signaling pathway evoked large $\rm Ca^{2+}$ release transients but very small $\rm Ca^{2+}$ plateaus, and this was associated with weak activation of $I_{\rm CRAC}$. If the receptors were stimulated under conditions where protein kinase C was blocked, then a large noninactivating $I_{\rm CRAC}$ was produced which gave rise to prominent $\rm Ca^{2+}$ influx.

In lacrimal gland cells on the other hand, phorbol ester was reported to have no effect at all on store-operated $\mathrm{Ca^{2^+}}$ influx (18). Similarly, Jurkat T cells also do not seem to utilize protein kinase C to modulate $\mathrm{Ca^{2^+}}$ influx through I_{CRAC} (1, 199). This is not unlike the situation with voltage-dependent $\mathrm{Ca^{2^+}}$ channels, some of which are modulated by PKC, whereas others are not. This might indicate that store-operated $\mathrm{Ca^{2^+}}$ channels, although phenomenologically similar, may in fact exhibit a similar diversity as voltage-operated channels, possibly composed of subunits and regulated in different ways to meet the requirements of a given cell.

Although protein kinase C has been the best studied kinase, other kinases have been reported to regulate store-operated Ca²⁺ influx. In *Xenopus* oocytes, a membrane-permeable analog of cAMP was found to reduce Ca²⁺ entry (169). It was not clear whether this was a direct effect of the cAMP or via cAMP-dependent protein kinase A. In

RBL cells, cAMP has no significant impact on the properties of I_{CRAC} (158).

Guanosine 3',5'-cyclic monophosphate itself or phosphorylation through cGMP-dependent protein kinase has been implicated in the activation mechanism (see sect. IIIB3), but several reports have failed to document a regulatory role. In RBL cells, cGMP did not affect inactivation of I_{CRAC} (158). Similarly, in *Xenopus* oocytes, membrane-permeable analogs of cGMP did not alter store-operated Ca²⁺ entry (161, 169). In pancreatic acinar cells and T lymphocytes, cGMP was also found to have no role in store-operated Ca²⁺ influx (63).

5. Adenosine and guanosine nucleotides

Fasolato and co-workers (80) described an inhibitory action of cytosplasmic ADP on $I_{\rm CRAC}$ in RBL cells that provided a link between the metabolic status of the cell and CRAC channels in the plasma membrane. This mechanism was found to be temperature dependent and ${\rm Ca}^{2+}$ dependent and specific for ADP compared with other nucleotides. The inhibition by ADP was rapidly lost on obtaining the whole cell configuration, indicating that it required a small diffusible factor.

IV. OTHER CALCIUM INFLUX PATHWAYS

A. Store Operated

Although I_{CRAC} was the first store-operated Ca^{2+} current to be described, other currents have been observed. These currents have a different ionic selectivity compared with I_{CRAC} and are not as selective for Ca^{2+} . They have been observed in A 431 endothelial cells (114), Xenopus oocytes (161), and endothelial cells (234). These are summarized in Table 2. In pancreatic β -cells, an excitable cell that expresses voltage-gated Ca^{2+} channels, depletion of stores has been reported to activate a nonselective cation current that is permeable to Ca^{2+} (243).

With the use of perforated patch recordings at 37° C in RBL cells, antigenic stimulation and thapsigargin were both found to activate an inwardly rectifying Ca^{2+} current (248). This Ca^{2+} current had very different selectivity compared with I_{CRAC} in that the permeation preference was determined to be $Sr^{2+} > Ba^{2+} > Ca^{2+}$. Interestingly, pretreatment of the cells with BAPTA-AM reversed the conductivity profile so that now $Ca^{2+} > Ba^{2+}$, Sr^{2+} . The reason for this BAPTA-dependent switch is not clear but needs to be addressed because it is might yield important insight into mechanisms that determine selectivity of store-operated channels.

It has also been proposed that the selectivity of CRAC channels changes in a manner dependent on the external ${\rm Ca^{2+}}$ concentration. When ${\rm Ca^{2+}}$ was lowered from 10 to 2

mM, some outward K⁺ currents, presumed to flow through CRAC channels, were observed (75). Selectivity of storeoperated Ca²⁺ currents might be dependent on the ionic composition of the solutions used, and therefore, the different selectivities might merely reflect the different experimental conditions. However, this is unlikely to account for those preparations where single-channel currents have been measured. In A 431 epidermal cells, a single-channel conductance of 2 pS (in 200 mM Ca²⁺) was observed (114). This Ca²⁺ current was only measured in cell-attached patches and was not observed in the whole cell configuration. The reason for this is not clear but might reflect the presence of only a few channels in the entire cell, that the signal activating the channels is rapidly lost on obtaining the whole cell configuration, or the Ca²⁺ channels are rapidly inactivated by Ca²⁺ influx. In endothelial cells, a single-channel conductance of 11 pS was observed (233).

B. Store Independent

It now is widely accepted that store-operated Ca²⁺ influx is the predominant voltage-independent Ca²⁺ entry pathway. However, other Ca²⁺ influx pathways have been described. Although these pathways are not as ubiquitously distributed, they can coexist with store-operated influx in the same cell. It is therefore essential to rule out possible contributions of these other influx pathways to Ca²⁺ influx to examine store-operated Ca²⁺ influx in relative isolation.

1. $InsP_3$ -gated Ca^{2+} channels

Calcium channels directly gated by InsP₃ were first described by Kuno and Gardner (99) in excised patches taken from Jurkat T lymphocytes. These channels had a single-channel conductance of 7 pS and were freely permeable to Ca²⁺ and Ba²⁺. The InsP₃-activated Ca²⁺ currents have also been reported in A 431 cells (143), endothelial cells (234), and olfactory neurons (48). It is noteworthy that, with the exception of olfactory neurons, all studies that report InsP₃-gated ion channels in the plasma membrane have only been observed in single-channel patches.

In mast and RBL cells, $InsP_3$ -, thapsigargin-, and ionomycin-activated I_{CRAC} are not additive (78, 159). Hence, $InsP_3$ does not appear to evoke additional Ca^{2+} influx other than through depletion of the stores. Similarly, whole cell experiments in Jurkat T cells only revealed I_{CRAC} after either receptor activation or application of thapsigargin and failed to document the presence of $InsP_3$ -gated channels (252).

2. $InsP_4$ and Ca^{2+} influx

Inositol 1,4,5-trisphosphate is metabolized to $InsP_4$ by a Ca^{2+} -activated 3-kinase. Inositol 1,3,4,5-tetrakisphos-

phate would therefore provide an attractive mechanism for stimulating Ca²⁺ influx after InsP₃-mediated Ca²⁺ release. Initial experiments on sea urchin eggs found that although InsP₃ and InsP₄ alone were ineffective in evoking Ca²⁺ influx, a combination of InsP₃ and InsP₄ induced entry (83). These results were supported by patch-clamp experiments on lacrimal gland cells (141). In Xenopus oocytes, it was also reported that InsP3 and InsP4 act synergistically to promote Ca²⁺ influx (41). However, these reports were challenged by groups using the same cells and techniques and which concluded that InsP4 was not necessary for Ca²⁺ influx. In rat mast cells, InsP₄ did not enhance Ca²⁺ influx induced by InsP₃ (125). Other experiments in *Xenopus* oocytes employing nonmetabolizable analogs of InsP3 showed that InsP3 alone was sufficient to induce Ca^{2+} entry (37, 132, 213). In fact, overexpressing the 3-kinase, which converts InsP₃ to InsP₄, was found to reduce Ca²⁺ influx in the oocyte, apparently by reducing InsP₃ levels and hence the extent of store depletion (237).

In A 431 epidermal cells, Lückhoff and Clapham (113) reported the existence of an InsP₄-modulated Mn²⁺-permeable channel in excised patches. This channel required high cytosolic Ca²⁺ for activation. Modulation by InsP₄ was not observed when Ca²⁺ was clamped at low levels. The InsP₄-modulated Ca²⁺ channels have also been reported in excised patches from olfactory neurons (49). In our own experiments in RBL cells and mast cells, InsP₄ alone does not activate any currents at low or high cytosolic Ca²⁺ (1 μ M), nor does InsP₄ affect the amplitude or time course of I_{CRAC} when activated by InsP₃ or ionomycin. Although a role for InsP₄ in promoting Ca²⁺ influx after receptor stimulation is controversial, it appears that InsP₄ does not contribute in a major way to store-operated Ca²⁺ influx.

3. Ca^{2+} -activated cation channels

Von Tscharner et al. (240) described the presence of large-conductance Ca²⁺-activated channels permeable to Ca²⁺ in human neutrophils and proposed that these channels would be activated by Ca²⁺ release from InsP₃-sensitive stores (240). They would therefore contribute to the plateau phase of Ca²⁺ entry. Calcium-activated channels have also been reported in human epithelial cells (23), endothelial cells (113), brown fat cells (95), collecting duct cells (96), lung epithelial cells (122), pancreatic acinar cells (174), and rat insulinoma cells (190). These channels do not discriminate well between Ca2+ and Na+, so that under physiological conditions, the current will be carried mainly by Na⁺, and large currents will be required to significantly elevate cytosolic Ca²⁺. Activation of these currents will result in a substantial depolarization of the membrane potential, and this will significantly reduce the electrical driving force for Ca²⁺ entry through the more effective store-operated pathway.

4. Ligand-gated cation channels

Ligand-gated channels, epitomized by the nicotinic acetylcholine receptor at the neuromuscular junction, are nonselective cation channels with a limited permeability to ${\rm Ca^{2^+}}$. These channels are activated by the binding of specific extracellular agonists. In smooth muscle, Benham and Tsien (7) described an ATP-gated channel with a $P_{\rm Ca}/P_{\rm Na}$ of 3. Sage and co-workers (116, 117) described an ADP-gated channel in platelets that was permeable to ${\rm Na^+}$, ${\rm Ca^{2^+}}$, and ${\rm Mn^{2^+}}$. These channels discriminate poorly between ${\rm Ca^{2^+}}$ and ${\rm Na^+}$, and therefore, large whole cell currents are required to elevate ${\rm Ca^{2^+}}$.

5. Leukotriene-activated Ca²⁺ channels

Growth factors like epidermal growth factor induce $\mathrm{Ca^{2^+}}$ influx in many cell types. In A 431 carcinoma cells, epidermal growth factor activated 10-pS $\mathrm{Ca^{2^+}}$ channels in excised or cell-attached patches, and this was eliminated by lipoxygenase inhibition (167). Leukotriene $\mathrm{C_4}$ mimicked the effects of epidermal growth factor in excised patches. Similar eicosanoid-activated $\mathrm{Ca^{2^+}}$ channels in other tissues have not been well documented.

6. Kinase-activated Ca²⁺ channels

In human B lymphocytes, Akha et al. (2) described an anti-immunoglobulin-induced voltage-insensitive Ca²⁺ influx pathway (2). This pathway exhibited a pharmacological profile similar to that of the L-type Ca²⁺ channel but was activated through a cGMP-dependent protein kinase pathway. It was still activated despite the presence of thapsigargin, which was interpreted as evidence against a store-dependent mechanism.

7. G protein-activated Ca^{2+} channels

In response to receptor stimulation, e.g., with compound 48/80, nonselective cation channels can be activated in rat peritoneal mast cells (but not in the tumor mast cell line RBL-2H3). The channel has a unitary conductance of 50 pS and induces small whole cell currents (5-50 pA at a holding potential of -40 mV; Ref. 164).Channel activation is likely mediated by a G protein, since GTP γ S mimicks and GDP β S inhibits receptor-mediated activation of these channels. Channel activity is subject to negative-feedback inhibition through protein kinase C and high [Ca²⁺]_i. Although activation of 50-pS channels is often associated with Ca²⁺ mobilization from intracellular stores, the 50-pS channel is not directly activated by either Ca^{2+} or InsP₃. Because I_{CRAC} is also present in mast cells, it was necessary to assess the relative contributions of the two influx pathways. The conclusion from these studies was that 50-pS cation channels account for usually less than about one-third of Ca²⁺ influx activated by receptors (52).

V. PROBING STORE-OPERATED CALCIUM INFLUX

Several different methods are employed to study store-operated Ca²⁺ influx, and it may be appropriate here to briefly delineate the advantages and disadvantages of each technique.

A. Importance of SERCA Inhibitors

The discovery of the naturally occurring plant alkaloid thapsigargin in the late 1980s focused widespread attention on store-operated Ca^{2+} influx (218, 223). Thapsigargin is a sequiterpene lactone derived from the plant *Thapsia garganica*. It is a potent inhibitor of the SERCA and has become the major tool in the study of store-dependent Ca^{2+} influx (222).

Application of thapsigargin results in elevation of cytosolic free Ca^{2+} due to slow depletion of the stores. Hence, if the depletion of stores activates Ca^{2+} entry, one would expect that thapsigargin treatment should result in prominent Ca^{2+} influx. This was soon shown to be the case first in parotid cells (218) and then in a plethora of different cell types. Because Ca^{2+} entry evoked by thapsigargin was not associated with any elevation in inositol polyphosphates (but see below), it was the depletion of the stores per se that triggered Ca^{2+} influx.

Other SERCA inhibitors like cyclopiazonic acid (CPA) and di-tert-butylhydroguinone (TBHQ) were also able to mimic the effects of thapsigargin, although some differences in efficacy, reversibility, and selectivity have been reported (123). The usual protocol to induce storeoperated Ca²⁺ influx is to apply the SERCA inhibitor in the absence of external Ca²⁺ and then, after a few minutes when the release phase is over, to readmit extracellular Ca²⁺. This latter maneuver results in Ca²⁺ influx, the socalled off-response (219). Calcium entry evoked by thapsigargin or other SERCA inhibitors is now taken to be diagnostic for the presence of store-operated Ca²⁺ influx, and some of the references listed in Table 1 use this as the sole indicator for store-operated Ca²⁺ influx. This begs the question as to whether this is indeed true or if additional mechanisms might contribute. This issue has been discussed controversially in hepatocytes, where receptor stimulation and thapsigargin treatment have differential effects on Ca²⁺ influx as assessed by Mn²⁺ quenching of fura 2 fluorescence (65, 108). In addition, other pharmacological effects of thapsigargin unrelated to store depletion have been documented (194).

Another concern with the use of thapsigargin is that the depletion of stores in intact cells is usually associated with a rise in cytosolic Ca^{2+} . Only in whole cell patch-clamp experiments, where high Ca^{2+} buffer is included in the pipette solution, can the rise in Ca^{2+} be effectively

suppressed. Calcium-activated Ca^{2+} -permeable cation channels have been described (113, 240) and therefore could conceivably contribute to Ca^{2+} influx. Although cytosolic Ca^{2+} can be quite low during continuous application of thapsigargin in Ca^{2+} -free solution, it should be kept in mind that Ca^{2+} currents can be enhanced by Ca^{2+} -activated enzymes like calmodulin-dependent kinase. This could result in a form of "memory" in that a transient Ca^{2+} release is converted into a long-lasting activation of the Ca^{2+} entry pathway by protein phosphorylation. Of particular relevance to this issue is the recent finding that Ca^{2+} activation of cation channels in epithelial cells is mediated by calmodulin kinase, and the activation can long outlast the elevation in cytosolic free Ca^{2+} (23).

A further difficulty is that not all studies employing thapsigargin have ruled out elevation of inositol polyphosphates. If the levels of the latter rise, then one cannot definitively conclude that it is the depletion of stores per se that activates Ca²⁺ influx. Of relevance to this issue is the fact that certain isozymes of phospholipase C, the enzyme that hydrolyzes phosphatidylinositol 4,5-bisphosphate to generate InsP₃, are activated by a rise in cytosolic Ca²⁺ (47). In fact, this positive feedback by Ca²⁺ on phospholipase C (which would generate more InsP₃ and hence Ca²⁺ release) has been proposed as a mechanism for generating cytosolic Ca²⁺ oscillations in a variety of cell types (72, 133). Although several studies have documented the absence of an increase in InsP3 levels after thapsigargin treatment (66, 84, 100, 218), this important experiment has not always been conducted.

B. Cytosolic Ca²⁺ Measurements With Indicator Dyes

This method is currently the popular choice largely because cells can easily be loaded with the dye. Experiments are conducted either on cell populations or individual cells. Cell populations have the major drawback that the total Ca²⁺ signal is the average from thousands of cells, and important kinetic information is lost. Calcium oscillations were not observed in population studies, but routinely seen at the level of the individual cell.

The method has the major advantage that it is noninvasive, and therefore, important cytosolic molecules are not lost from the cell during an experiment, as occurs in whole cell patch-clamp recordings. However, there are several limitations.

I) The membrane potential is rarely controlled and is usually a free parameter in these cells. Calcium influx is very sensitive to the membrane potential, and fluctuations in electrical driving force can have considerable effects on $\mathrm{Ca^{2+}}$ influx (125, 164). Furthermore, many cells express several other ion channels like $\mathrm{Ca^{2+}}$ -activated $\mathrm{K^{+}}$ and $\mathrm{Cl^{-}}$ channels, and these can be activated by receptor

stimulation. In rat mast cells, it was shown that activation of a cAMP-gated Cl⁻ current clamped the membrane potential at negative potentials, which maintained a favorable driving force for Ca²⁺ influx (126, 164). Regulation of this Cl⁻ current would indirectly regulate Ca²⁺ influx through changes in the membrane potential.

- 2) Fura 2 experiments do not distinguish between store-operated Ca²⁺ influx and contributions from other Ca²⁺ entry pathways, which would complicate the overall interpretation.
- *3*) The Ca²⁺ signal is determined by the balance between Ca²⁺ influx and Ca²⁺ extrusion. Changes in pump activity, Na⁺/Ca²⁺ exchange, and cytosolic buffering capacity, can all give the erroneous impression of changes in Ca²⁺ influx.
- 4) Dye compartmentalization can occur so that the dye accumulates in an internal store. Different results have been reported when fura 2 was directly injected into the cells compared with loading through the ester form (65, 108).

C. Mn²⁺ Influx and Fluorescence Quench

To circumvent some of the above problems, especially point 3, some researchers have used Mn²⁺ as an indicator of unidirectional Ca²⁺ influx (130). Manganese can permeate through CRAC channels and, on entering the cell, it binds to and quenches fura 2 (54). This is easily recorded as a steep decline in the fluorescent signal at 360nm wavelength. Manganese quenching does not overcome the problem of changes in membrane potential. Furthermore, Mn²⁺ is also permeable to nonselective cation channels and can enter the InsP₃-sensitive store, since the InsP₃ receptor/channel complex is permeable to Mn²⁺ as well. Manganese can then be released into the cytosol after receptor activation (54). Hence, Mn²⁺ quenching of fura 2 cannot be unequivocably attributed to Ca²⁺ influx through store-operated pathways. In addition, the entered Mn² might affect regulatory elements of store-operated influx.

D. Ca²⁺-Activated Currents as Reporters

This method has been used in cells which express Ca²⁺-activated currents (e.g., pancreatic acinar cells, *Xenopus* oocytes, HeLa cells, exocrine gland cells). *Xenopus* oocytes, for example, have numerous Ca²⁺-dependent Cl⁻ channels in the plasma membrane, and Ca²⁺ influx can be monitored through the currents these channels subsequently generate. Pancreatic acinar cells (173) and avian salt gland cells (121) have both Ca²⁺-dependent K⁺ and Cl⁻ channels. This method also enables the membrane potential to be controlled. The main limitation is that Ca²⁺ is measured only indirectly, and changes in either Ca²⁺

buffers or the properties of the Cl⁻ channels themselves need to be ruled out.

E. Patch-Clamp Measurements of $I_{\rm CRAC}$

The most direct way to study store-operated Ca²⁺ influx is to measure the Ca²⁺ current itself. This can only be accomplished by using the patch-clamp technique. Direct monitoring of the Ca²⁺ current greatly simplifies interpretation. For example, agonist-induced reduction in the current cannot be attributed to changes in the membrane potential or Ca²⁺ pump activity. A further advantage with the patch-clamp technique is that, in whole cell dialysis experiments, the experimenter can control the ionic composition of the cytosol by judicious choice of pipette solution. Conditions can be used that eliminate other Ca²⁺ influx pathways so that store-operated Ca²⁺ influx can be studied in relative isolation. A main limitation with the whole cell patch-clamp technique is that potentially important molecules are washed out from the cell during dialysis. The perforated patch technique avoids this problem while still enabling excellent voltage clamp. However, a high Ca²⁺-buffering capacity is required for measuring I_{CRAC} (several mM), and this is not possible in perforated patch recordings because only small ions equilibrate between the pipette solution and the cytosol. Although it is possible to preload the cytosol with chelators by incubation with acetoxymethyl derivatives (e.g., BAPTA-AM), the actual loading is low and rarely exceeds a few hundred micromoles per liter.

The different interpretations that might be drawn using different techniques can be seen from our work on Ca²⁺ influx in RBL cells (158). In fura 2-AM-loaded cells, the amount of Ca²⁺ influx is similar following activation of either antigen or adenosine A₃ receptors. However, I_{CRAC} was smaller after antigen stimulation (-1.6 pA/pF) compared with adenosine receptor stimulation (-4 pA/ pF). This means that the size of Ca²⁺ influx in a fura 2-AM-loaded cell does not accurately indicate the amplitude of I_{CRAC} . The reason for this discrepancy likely arises from the fact that antigen activates inwardly rectifying K⁺ channels in RBL cells. This would clamp the membrane potential at negative potentials, thereby creating a favorable driving force for Ca²⁺ influx. Few conducting CRAC channels at negative potentials will be as effective in raising Ca²⁺ as many conducting channels at more depolarized potentials.

VI. MOLECULAR BIOLOGY OF STORE-OPERATED CHANNELS

The CRAC channel has not yet been cloned, and nothing is known about the structural components of the channel that determine gating and selectivity. Recently, much

excitement has been aroused by the findings that the Drosophila photoreceptor trp gene might encode a store-operated channel.

In invertebrates, absorption of a photon by rhodopsin initiates a cascade of events culminating in InsP₃ production. This is associated with a depolarization of the photoreceptor cells due to activation of an inward cationic current that generates the so-called receptor potential. The receptor potential has two components: an initial rapid depolarization due to a Na⁺ current and, if light is maintained, a smaller but sustained depolarization that arises from a current carried by both Na⁺ and Ca²⁺. In one type of mutant fly, called transient receptor potential or trp, light activates only the transient current, and the slow sustained component is missing (189, 251).

Molecular cloning of the *Drosophila* trp (135), and the related protein trpl (176), subsequently revealed some homology to voltage-gated Ca2+ channels. Local hydrophobicity plots suggested six transmembrane-spanning regions as observed for voltage-dependent Na⁺ and Ca²⁺ channels. Strikingly, homology was strongest in the S5-S6 linker region that constitutes the channel pore. Interestingly, the high density of charged amino acids in the S4 segment, thought to constitute the voltage sensor, was missing in trp. These findings led Hardie and Minke (71) to speculate that trp might encode a Ca2+ channel related to those involved in store-operated Ca²⁺ influx. Like voltage-gated Ca²⁺ channels, trp may be composed of multiple subunits. One such protein is INAD, which was cloned from mutant flies (207). The INAD mutants lack the prolonged depolarizing after potential which follows stimulation by intense blue light. Antibodies against InAD coimmunoprecipitate with trp, demonstrating a tight physical association.

Expression of *Drosophila* tro in Sf9 insect cells showed that the protein indeed encoded a Ca²⁺-permeable channel that could be activated by thapsigargin (235). Similarly, in Xenopus oocytes, Drosophila trp was found to increase the amplitude of Ca²⁺-entry activated Cl⁻ currents (171). Unlike trp, trpl which is a nonselective cation current, was not activated by thapsigargin but instead required GTPγS or InsP₃ (45). Schilling and colleagues (212) observed that trp and trpl differed largely in their carboxy-terminal tail; trp contained a long, proline-rich tail that was completely absent in trpl. They speculated that this proline-rich segment might confer the sensitivity to thapsigargin. To test this directly, they constructed chimeras between trp and trpl. When the carboxy-tail of trp was replaced with that from trpl, the trp chimera was no longer sensitive to thapsigargin. However, thapsigargin sensitivity was conferred onto trpl when it contained the carboxy-terminal of trp. It was therefore proposed that sensitivity to thapsigargin-induced Ca²⁺ store depletion resided in the carboxy-terminal tail (212).

Recently, several human homologs of trp have been

identified (175, 249, 250). Transient expression of two of these clones (Htrp1 and Htrp3) in COS and L cells enhanced Ca²⁺ influx up to twofold after muscarinic receptor stimulation (249). Unexpectedly, Ca²⁺ influx after thapsigargin treatment increased to a lesser extent in the Htrp3-transfected cells than was the case with receptor stimulation. It seemed that Htrp3 was more sensitive to agonist-induced store depletion than thapsigargin-induced depletion. This raises the possibility that receptor activation might activate additional signaling pathways in addition to depletion of stores that control store-operated Ca²⁺ influx. Experiments using antisense oligonucleotides to the trp genes revealed that endogenous store-operated Ca²⁺ influx was abolished in six of nine clones that had been transfected. Zitt et al. (250) have also identified a human homologue to trp. TRPC1A, from a human fetal brain cDNA library. It appears to be a splice variant of *Htrp1*. Expression of *TRPC1A* in CHO cells induced nonselective cation currents with similar permeabilities for Na⁺, Ca²⁺, and Cs⁺ in response to intracellular infusion of myo-InsP₃ or thapsigargin (250). A further trp homolog, termed bCCE, was identified by Philipp et al. (175) by screening bovine cDNA libraries. When expressing the gene product in human embrionic kidney cells, large inward currents carried by Ca²⁺ were activated when challenging the cells with thapsigargin or InsP₃. Together, these results suggest that an endogenous trp-like protein is involved in Ca²⁺ influx after receptor stimulation. The human trp homologs have very variable carboxy-terminals yet are apparently activated by thapsigargin. Thus the thapsigargin sensitivity of mammalian trp homologs may not be only localized to the carboxy-terminal.

In *Drosophila* photoreceptors, Niemayer at al. (149) demonstrated that the light-activated conductance was actually a complex consisting of both trp and trpl (149). Although each channel could be activated independently, they served partially overlapping functions. Using antibodies and immunofluorescent staining, they clearly demonstrated that trp localized to rhabdomeres. They did not find any evidence for preferential localization of trp to regions adjacent to the plasma membrane.

Does trp encode for $I_{\rm CRAC}$? Although evidence is accumulating that trp can be activated by thapsigargin, the results described below suggest that trp is not $I_{\rm CRAC}$.

- 1) The trp channel is moderately selective for Ca²⁺ over Na⁺ and exhibits a $P_{\rm Ca}/P_{\rm Na}$ of \sim 40 (70). Calcium release-activated Ca²⁺ current has a $P_{\rm Ca}/P_{\rm Na}$ of \sim 1,000.
- 2) Noise analysis estimates the single-channel conductance of trp to be 4.5 pS (70). This is almost three orders of magnitude larger than the estimates for I_{CRAC} .
- *3*) It has still not been demonstrated in photoreceptors that trp is activated by store depletion. Other sensory neurons express InsP₃- and InsP₄-gated Ca²⁺ channels, and these might conceivably control trp in the native tissue (48, 49). A complicating factor is that the surface mem-

brane of the photoreceptors is highly invaginated, and therefore, free diffusion is hampered. It is difficult to adequately control the ionic solution experimentally, so Ca²⁺ chelators like BAPTA are not readily able to access these sites. The trp channel could be activated by a rapid local rise in cytosolic Ca²⁺ rather than store depletion. In light of this latter possibility, it is interesting to note that trp has calmodulin binding sequences in the primary amino acid sequence. In mammalian photoreceptors, cGMP activates a channel permeable to Na⁺ and Ca²⁺. It has been suggested that elevated Ca²⁺ (due to release from stores) stimulates guanylyl cyclase, resulting in cGMP production, which then gates the mammalian analog of Drosophila trp (97). The only studies to directly examine whether light could induce depletion of stores were negative so far, indicating that activation of trp in its native cell was not associated with depletion of stores (69, 189).

- 4) Recombinant trp in Sf9 insect cells shows some properties not expected of $I_{\rm CRAC}$. The Ca²⁺ current does not inactivate during long hyperpolarizing pulses of 400-ms duration despite the presence of 50 mM Ca²⁺ in the extracellular solution and modest intracellular Ca²⁺ buffering (235).
- 5) Large Ca²⁺ currents of almost 1-nA amplitude can be measured in the Sf9 cells after thapsigargin treatment with only a few hundred micromolar of free EGTA in the recording pipette (235). Assuming 99% of incoming Ca²⁺ is buffered, and the Sf9 cell is a typical round cell of 10- μ m diameter, this means that cytosolic Ca²⁺ should rise at a rate of 10 μ M/s. This is a massive rate, and the buffers would not be able to adequately control free Ca²⁺. A crucial experiment to establish that recombinant trp is a store-operated Ca²⁺ current requires its transfection in a mammalian cell line, and the demonstration that several independent methods of store depletion activate the same Ca²⁺ current in the presence of high intracellular Ca²⁺ chelators.
- 6) The report that trp is localized in the plasma membrane adjacent to the Ca²⁺ stores has been taken as evidence in support of the conformational-coupling model for store-operated Ca²⁺ influx (178). A recent finding using polyclonal antibodies to trp and trpl has demonstrated that the proteins are localized to the rhabdomeres, which are devoid of intracellular stores (149). If trp is indeed activated by store depletion in the photoreceptors, then this latter result is difficult to reconcile with conformational coupling. Clarification of this issue is required to carry the conformational-coupling hypothesis further.

VII. PHYSIOLOGICAL FUNCTIONS OF CALCIUM RELEASE-ACTIVATED CALCIUM CURRENT

Although we know little about the molecular biology of CRAC channels, recent experiments have clearly estab-

lished that $I_{\rm CRAC}$ fulfills numerous important physiological functions.

A. Refilling of Stores

One obvious role of I_{CRAC} would be to replenish the intracellular Ca²⁺ stores. In fact, most of the crucial experiments that led to the discovery of store-operated Ca²⁺ entry focused on the refilling kinetics of depleted stores (218, 219). For example, in *Xenopus* oocytes, Parekh et al. (156) found that the store-operated Ca²⁺ entry pathway was essential for refilling of the agonist-sensitive internal stores. If Ca²⁺ influx was compromised, subsequent Ca²⁺ release by a receptor agonist was reduced. Similar conclusions have been drawn from studies in endothelial cells (85) and neutrophils (137). Although some cells are quite effective in recycling their released Ca²⁺, many cell types require influx from the extracellular space to refill their stores, since a major part of the Ca²⁺ released from intracellular stores is exported from the cell by the plasma membrane Ca²⁺-ATPase. In pancreatic acinar cells, the amount of Ca²⁺ extruded from a cell during a single spike corresponds to $\sim 40\%$ of the total mobilizable intracellular Ca²⁺ pool (221). The large extrusion highlights the need for compensatory Ca²⁺ entry and explains why only a few Ca²⁺ transients can be generated in the absence of storeoperated Ca²⁺ entry.

B. Ca²⁺ Oscillations and Waves

In many diverse cell types, Ca²⁺ influx has been reported to alter the pattern of Ca²⁺ oscillations. In *Xenopus* oocytes, Ca²⁺ influx accelerated the speed at which the spiral Ca²⁺ wave propagated through the cytoplasm and modified the pattern of cytosolic Ca²⁺ oscillations (64, 246). In HeLa cells and avian exocrine nasal gland, Ca²⁺ influx was necessary to drive the intrinsic intracellular oscillatory mechanism (120, 226). In T lymphocytes, Ca²⁺ oscillations are critically dependent on Ca²⁺ influx, and it has been suggested that they arise from cyclical interaction between intracellular Ca²⁺ stores and CRAC channels in the plasma membrane (44).

These results clearly demonstrate an important role for Ca^{2+} influx in determining the pattern of Ca^{2+} oscillations and wave propagation, and it will be important to assess the relevant contribution of store-operated Ca^{2+} influx pathways during the various phases of oscillatory Ca^{2+} signaling in different cell types. A recent report argues that store-operated Ca^{2+} influx is not involved in generating cytosolic Ca^{2+} oscillations. Oscillations are driven instead by a store-independent receptor-activated pathway (210).

C. Secretion

In many nonexcitable cells, cytosolic Ca^{2^+} is an important factor controlling regulated exocytosis. In mast cells, I_{CRAC} provides the major contribution to the elevated Ca^{2^+} plateau following receptor stimulation (52). Although secretion in mast cells involves a GTP-dependent step (165), Ca^{2^+} influx through I_{CRAC} accelerates the rate of GTP-dependent exocytosis (146, 166). In RBL cells, I_{CRAC} is the direct source of Ca^{2^+} for secretion (158, 248).

D. Adenylate Cyclase

Several Ca²⁺-dependent isozymes of adenylyl cyclase have been described. Activation of Ca²⁺ influx after thapsigargin treatment in C6-2B glioma cells has been found to inhibit the type VI adenylyl cyclase isozyme and activate the type I form (29, 37). This Ca²⁺-dependent regulation was specific to Ca²⁺ influx because Ca²⁺ release was without effect on enzyme activity. Functional studies have led to the suggestion that the Ca²⁺-sensitive adenylyl cyclases might colocalize with the Ca²⁺ entry channels (50). Changes in Ca²⁺ influx could then induce rapid changes in the levels of cAMP. Recently, it has been found that cAMP-dependent protein kinase can phosphorylate serine residues on phospholipase $C-\beta_2$, thereby inhibiting enzymatic activity (107). This also raises the possibility of a novel feedback mechanism between Ca²⁺ release and store-operated Ca²⁺ influx, mediated by cAMP levels. If the type I adenylyl cyclase colocalizes with the Ca²⁺ influx pathway, then Ca²⁺ entry will increase cAMP levels because this isozyme is Ca²⁺ activated. Elevation of cAMP and subsequent activation of cAMP-dependent protein kinase could then phosphorylate phospholipase $C-\beta_2$, resulting in cessation of InsP₃ production. Stores will now refill, and store-operated Ca²⁺ influx will turn off. However, if the type VI adenylyl cyclase isozyme colocalizes with the Ca²⁺ entry pathway, Ca²⁺ influx will reduce cAMP levels and presumably phospholipase $C-\beta_2$ activity will therefore increase. This could result in more sustained store depletion due to continuous InsP3 production and hence prolonged store-operated Ca²⁺ influx. The time course of store-operated Ca²⁺ influx could be subtly controlled by the isozyme of adenylyl cyclase that colocalizes with the Ca²⁺ influx pathway.

Given that cAMP can regulate multiple spatially and temporally distinct processes, changes in Ca²⁺ entry could indirectly control many diverse cell functions.

E. Gene Transcription

In lymphocytes, activation of the T-cell receptor ultimately results in increased synthesis and secretion of both interleukin-2 (IL-2) and its receptor. The molecular mech-

anisms whereby this is accomplished are now reasonably well understood (38). T-cell receptor activation elevates ${\rm InsP_3}$ levels that deplete stores. This results in activation of $I_{\rm CRAC}$ and thus sustained ${\rm Ca^{2+}}$ influx. Elevated cytosolic ${\rm Ca^{2+}}$ then activates the ${\rm Ca^{2+}}$ -dependent phosphatase calcineurin. Calcineurin enters the nucleus and dephosphorylates the transcriptor factor NF-AT, resulting in increased transcription of the IL-2 gene as well as its receptor. Studies on mutant lymphocytes that were defective in $I_{\rm CRAC}$ established a close correlation between the reduction in ${\rm Ca^{2+}}$ influx due to $I_{\rm CRAC}$ and subsequent ${\rm Ca^{2+}}$ -dependent gene transcription (51).

F. Cell Cycle and Proliferation

Most cells in a multicellular system are in a quiescent, nondividing G_0 state. Upon stimulation with appropriate mitogens/growth factors, the cells can resume the cell cycle that culminates in mitosis. Two critical junctures are at the G_1 /S phase, which precedes the onset of DNA synthesis, and the G_2 /M phase. It now appears that release of stored Ca^{2+} by $InsP_3$ plays a crucial role in determining the entry into these stages (9). The role for Ca^{2+} influx is more obscure. In both Swiss 3T3 and mouse NIH-3T3 cells, reducing Ca^{2+} entry during mitogen stimulation inhibits cell growth, although the nature of the Ca^{2+} entry pathway is not known (115, 220). Just how Ca^{2+} elevation controls DNA synthesis is not clear, although the available evidence points to a role for calmodulin in stimulating certain transcription factors resulting in protein synthesis.

At the G₂/M phase, a transient increase in free Ca²⁺ is important for the generation of maturation-promoting factor, which orchestrates the final events leading to mitosis. Interestingly, during the mitotic state, it appears that the coupling between depletion of stores and subsequent Ca²⁺ influx is severed (181). Both histamine- and thapsigargin-cvoked Ca²⁺ entry is lost, whereas the Ca²⁺ release is largely unaffected. The mechanism that underlies this uncoupling is not known. In view of the dramatic changes that occur in cell morphology, remodeling of the cytoskeleton, distribution of stores, and presence of numerous new signaling molecules, it is likely that several processes can contribute to the dissociation between Ca²⁺ release and influx.

G. Apoptosis

Activation of sphingomyelinase generates an array of signaling molecules that have recently been shown to play a prominent role in cell growth and differentiation as well as programmed cell death, or apoptosis (215). The metabolites produced from sphingomyelin cleavage, e.g., sphingosine, sphingosine-1-phosphate, and ceramide, stimulate or inhibit numerous effector systems, including stimula-

tion of a ceramide-activated protein kinase, a ceramide-activated protein phosphatase, a mitogen-activated protein kinase, inhibition of protein kinase C, and release of $[\mathrm{Ca}^{2^+}]_i$. The latter two in particular may have important implications for the observations that link Ca^{2^+} entry and protein kinase C to growth arrest and cell death (112), because the observed increase in $[\mathrm{Ca}^{2^+}]_i$ after stimulation of sphingolipid signaling pathways may be mediated in part by Ca^{2^+} release and depletion of intracellular stores with subsequent activation of I_{CRAC} . At the same time, I_{CRAC} might be boosted by removal of negative-feedback inhibition due to inhibition of protein kinase C, leading to severely enhanced and prolonged elevations of $[\mathrm{Ca}^{2^+}]_i$ that ultimately may result in apoptotic cell death.

H. Pathophysiology

Given that $I_{\rm CRAC}$ can control a diverse array of physiological processes, it comes as no surprise that abnormalities in the current give rise to human diseases. The most vivid demonstration of this was the finding that $I_{\rm CRAC}$ was completely absent from the T cells of a patient suffering from a primary immunodeficiency (162). This was associated with defective T-cell proliferation after stimulation with TCR-CD3 complex. Calcium release was not compromised in the disorder. Proliferation was restored by addition of a Ca²⁺ ionophore to the medium. Hence, the immune disorder specifically lay in the absence of $I_{\rm CRAC}$. The child was not able to mount an immune response and died.

Abnormalities in $I_{\rm CRAC}$ have also been implicated in hyperglycemia (192). Elevated glucose in the culture medium was found to inhibit thapsigargin-evoked ${\rm Ca^{2^+}}$ influx compared with incubations in lower glucose medium. In the hyperglycemic cells, thapsigargin released ${\rm Ca^{2^+}}$ at a faster rate in ${\rm Ca^{2^+}}$ -free solution, indicating that the loss of influx was not simply due to less ${\rm Ca^{2^+}}$ release from the stores.

VIII. CONCLUDING REMARKS

The past few years have witnessed a dramatic increase in our understanding of the processes that underlie Ca²⁺ influx in nonexcitable cells. It is now firmly established that the predominant Ca²⁺ entry pathway is the store-operated one. Electrophysiological studies point to the existence of a family of store-operated Ca²⁺ currents, rather than a homogeneous population of a ubiquitously distributed channel. In this respect, store-operated Ca²⁺ currents in excitable cells. Calcium release-activated Ca²⁺ current appears to be the most widely distributed store-operated Ca²⁺ current, and certainly the most selective for Ca²⁺. Although the CRAC channels have not yet been cloned,

the *trp* gene appears to be the first candidate that encodes a store-operated channel.

Now that the basic aspects of store-operated Ca²⁺ influx have been established, perhaps the greatest challenge facing researchers in the field is to understand, at a molecular level, how the current is activated. Just how depletion of stores activates Ca²⁺ channels remains a mystery. At least two steps are required: a molecule that senses the Ca²⁺ content of the stores and a signal that links the store content to Ca²⁺ channels in the plasma membrane. Unfortunately, and despite intense research, little is known about the properties of either process. Although numerous candidates have been proposed, the activation mechanism still remains elusive.

We are beginning to appreciate the crucial role store-operated Ca²⁺ influx fulfills in physiological systems. This Ca²⁺ entry pathway does more than merely replenish the stores. Store-operated Ca²⁺ influx cannot only induce short-term effects through changes in the spatiotemporal pattern of Ca²⁺ signaling, but also long-lasting effects through regulation of gene transcription. As the burgeoning list of processes regulated by store-operated Ca²⁺ entry continues, it is likely that disturbances in the entry pathway will be linked to human disorders. The store-operated Ca²⁺ influx pathway may therefore represent an important, and hitherto unexplored, target for the design of therapeutic agents.

REFERENCES

- AHNADI, C. E., M. D. PAYET, AND G. DUPUIS. Effects of staurosporine on the capacitative regulation of the state of the Ca²⁺ reserves in activated Jurkat T lymphocytes. *Cell Calcium* 19: 509– 520, 1996.
- AKHA, A. A. S., N. J. WILLMOTT, K. BRICKLEY, A. C. DOLPHIN, A. GALIONE, AND S. V. HUNT. Anti-Ig-induced calcium influx in rat B lymphocytes mediated by cGMP through a dihydropyridinesensitive channel. J. Biol. Chem. 271: 7297–7300, 1996.
- ALVAREZ, J., M. MONTERO, AND J. GARCIA-SANCHO. Cytochrome P-450 may link intracellular Ca²⁺ stores with plasma membrane Ca²⁺ influx. Biochem. J. 274: 193–197, 1991.
- ALVAREZ, J., M. MONTERO, AND J. GARCIA-SANCHO. High affinity inhibition of Ca²⁺-dependent K⁺ channels by cytochrome P-450 inhibitors. J. Biol. Chem. 267: 11789-11793, 1992.
- AUB, D. L., J. S. McKINNEY, AND J. W. PUTNEY, JR. Nature of the receptor-regulated calcium pool in the rat parotid gland. J. Physiol. (Lond.) 331: 557–565, 1982.
- BAHNSON, T. D., S. J. PANDOL, AND V. E. DIONNE. Cyclic GMF modulates depletion-activated Ca²⁺ entry in pancreatic acinar cells. *J. Biol. Chem.* 268: 10808–10812, 1993.
- BENHAM, C. D., AND R. W. TSIEN. A novel receptor-operated Ca²⁺permeable channel activated by ATP in smooth muscle. *Nature*328: 275–278, 1987.
- BERRIDGE, M. J. Inositol trisphosphate and calcium signalling. Nature 361: 315–325, 1993.
- BERRIDGE, M. J. Calcium signalling and cell proliferation. *Bioessays* 17: 491–500, 1995.
- BERRIDGE, M. J. Capacitative calcium entry. Biochem. J. 312: 1– 11, 1995.
- BERRIDGE, M. J. Capacitative Ca²⁺ entry—sifting through the evidence for CIF. *Biochem. J.* 314: 1055–1056, 1996.
- 12. BERTRAM, R., P. SMOLEN, A. SHERMAN, D. MEARS, I. AT-

- WATER, F. MARTIN, AND B. SORIA. A role for calcium release-activated current (CRAC) in cholinergic modulation of electrical activity in pancreatic beta-cells. *Biophys. J.* 68: 2323–2332, 1995.
- BERVEN, L. A., AND G. J. BARRITT. A role for a pertussis toxinsensitive trimeric G-protein in store-operated Ca²⁺ inflow in hepatocytes. FEBS Lett. 346: 235–240, 1994.
- 14. BERVEN, L. A., M. F. CROUCH, F. KATSIS, B. E. KEMP, L. M. HARLAND, AND G. J. BARRITT. Evidence that the pertussis toxin-sensitive trimeric GTP-binding protein G_{12} is required for agonist- and store-activated Ca^{2+} inflow in hepatocytes. *J. Biol. Chem.* 270: 25893–25897, 1995.
- BEZPROZVANNY, I., AND B. E. EHRLICH. Inositol (1,4,5)-trisphosphate (InsP₃)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. J. Gen. Physiol. 104: 821–856, 1994.
- BIRD, G. S., X. BIAN, AND J. W. PUTNEY, Jr. Calcium entry signal? Nature 373: 481–482, 1995.
- BIRD, G. S., AND J. W. PUTNEY, Jr. Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J. Biol. Chem. 268: 21486–21488, 1993.
- BIRD, G. S., M. F. ROSSIER, J. F. OBIE, AND J. W. PUTNEY, JR. Sinusoidal oscillations in intracellular calcium requiring negative feedback by protein kinase C. J. Biol. Chem. 268: 8425–8428, 1993.
- BISCHOF, G., J. BRENMAN, D. S. BREDT, AND T. E. MACHEN. Possible regulation of capacitative Ca²⁺ entry into colonic epithelial cells by NO and cGMP. Cell Calcium 17: 250–262, 1995.
- BLATTER, L. A. Depletion and filling of intracellular calcium stores in vascular smooth muscle. Am. J. Physiol. 268 (Cell Physiol. 37): C503–C512, 1995.
- BODE, H. P., AND B. GOEKE. Protein kinase C activates capacitative calcium entry in the insulin secreting cell line RINm5F. FEBS Lett. 339: 307–311, 1994.
- BORDIN, S., A. C. BOSCHERO, E. M. CARNEIRO, AND I. AT-WATER. Ionic mechanisms involved in the regulation of insulin secretion by muscarinic agonists. J. Membr. Biol. 148: 177–184, 1995.
- BRAUN, A. P., AND H. SCHULMAN. A non-selective cation current activated via the multifunctional Ca²⁺-calmodulin-dependent protein kinase in human epithelial cells. *J. Physiol. (Lond.)* 488: 37– 55, 1995.
- 24. BURNAY, M. M., C. P. PYTHON, M. B. VALLOTTON, A. M. CAP-PONI, AND M. F. ROSSIER. Role of the capacitative calcium influx in the activation of steroidogenesis by angiotensin-II in adrenal glomerulosa cells. *Endocrinology* 135: 751–758, 1994.
- BYRON, K. L., AND C. W. TAYLOR. Vasopressin stimulation of Ca²⁺ mobilization, two bivalent cation entry pathways and Ca²⁺ efflux in A7r5 rat smooth muscle cells. *J. Physiol. (Lond.)* 485: 455–468, 1995.
- CASTEELS, R., AND G. DROOGMANS. Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J. Physiol. (Lond.) 317: 263–279, 1981.
- CAVALLINI, L., M. COASSIN, AND A. ALEXANDRE. Two classes of agonist-sensitive Ca²⁺ stores in platelets, as identified by their differential sensitivity to 2,5-di-(*tert*-butyl)-1,4-benzohydroquinone and thapsigargin. *Biochem. J.* 310: 449–452, 1995.
- CEJKA, J. C., M. S. LE, M. BIDET, M. TAUE, AND P. POUJEOL. Activation of calcium influx by ATP and store depletion in primary cultures of renal proximal cells. *Pflügers Arch.* 427: 33–41, 1994.
- 29. CHIONO, M., R. MAHEY, G. TATE, AND D. M. F. COOPER. Capacitative Ca²⁺ entry exclusively inhibits cAMP synthesis in C6–2B glioma cells: evidence that physiologically evoked Ca²⁺ entry regulates Ca²⁺-inhibitable adenylyl cyclase in non-excitable cells. *J. Biol. Chem.* 270: 1149–1155, 1995.
- CHRISTIAN, E. P., K. T. SPENCE, J. A. TOGO, P. G. DARGIS, AND J. PATEL. Calcium-dependent enhancement of depletion-activated calcium current in Jurkat T lymphocytes. *J. Membr. Biol.* 150: 63– 71, 1996.
- 31. CLAPHAM, D. E. Direct G protein activation of ion channels? *Annu. Rev. Neurosci.* 17: 441–464, 1994.
- 32. CLAPHAM, D. E. Calcium signaling. Cell 80: 259-268, 1995.

- CLAPHAM, D. E. Intracellular calcium. Replenishing the stores. Nature 375: 634–635, 1995.
- 34. CLEMENTI, E., A. MARTINI, G. STEFANI, J. MELDOLESI, AND P. VOLPE. LU52396, an inhibitor of the store-dependent (capacitative) Ca²⁺ influx. *Eur. J. Pharmacol.* 19: 23–31, 1995.
- 35. CLEVELAND, P. L., P. J. MILLARD, H. J. SHOWELL, AND C. M. FEWTRELL. Tenidap: a novel inhibitor of calcium influx in a mast cell line. *Cell Calcium* 14: 1–16, 1993.
- 36. COMBETTES, L., M. CLARET, AND P. CHAMPEIL. Do submaximal InsP₃ concentrations only induce the partial discharge of permeabilized hepatocyte calcium pools because of the concomitant reduction of intraluminal Ca²⁺ concentration? *FEBS Lett.* 301: 287–290, 1992.
- COOPER, D. M. F., M. YOSHIMURA, Y. ZHANG, M. CHIONO, AND R. MAHEY. Capacitative Ca²⁺ entry regulates Ca²⁺-sensitive adenylyl cyclases. *Biochem. J.* 297: 437–440, 1994.
- CRABTREE, G. R., AND N. A. CLIPSTONE. Signal transmission between the plasma membrane and nucleus of T lymphocytes. *Annu. Rev. Biochem.* 63: 1045–1083, 1994.
- DELISLE, S., O. BLONDEL, F. J. LONGO, W. E. SCHNABEL, G. I. BELL, AND M. J. WELSH. Expression of inositol 1,4,5-trisphosphate receptors changes the Ca²⁺ signal of *Xenopus* oocytes. *Am. J. Physiol.* 270 (*Cell Physiol.* 39): C1255–C1261, 1996.
- DELISLE, S., G. W. MAYR, AND M. J. WELSH. Inositol phosphate structural requisites for Ca²⁺ influx. Am. J. Physiol. 268 (Cell Physiol. 37): C1485–C1491, 1995.
- DELISLE, S., D. PITTET, B. V. POTTER, P. D. LEW, AND M. J. WELSH. InsP₃ and Ins(1,3,4,5)P₄ act in synergy to stimulate influx of extracellular Ca²⁺ in *Xenopus* oocytes. *Am. J. Physiol.* 262 (*Cell Physiol.* 31): C1456–C1463, 1992.
- DELLES, C., T. HALLER, AND P. DIETL. A highly calcium-selective cation current activated by intracellular calcium release in MDCK cells. J. Physiol. (Lond.) 486: 557–569, 1995.
- DEMAUREX, N., A. MONOD, D. P. KEW, AND K. H. KRAUSE. Characterization of receptor-mediated and store-regulated Ca²⁺ influx in human neutrophils. *Biochem. J.* 297: 595–601, 1994.
- 44. DOLMETSCH, R. E., AND R. S. LEWIS. Signaling between intracellular Ca²⁺ stores and depletion-activated Ca²⁺ channels generates [Ca²⁺]_i oscillations in T lymphocytes. *J. Gen. Physiol.* 103: 365–388, 1994.
- 45. DONG, Y., D. L. KUNZE, L. VACA, AND W. P. SCHILLING. Ins(1,4,5)P₃ activates *Drosophila* cation channel Trpl in recombinant baculovirus-infected Sf9 insect cells. *Am. J. Physiol.* 269 (*Cell Physiol.* 38): C1332–C1339, 1995.
- 46. DONI, M. G., L. CAVALLINI, AND A. ALEXANDRE. Ca²⁺ influx in platelets: activation by thrombin and by the depletion of the stores: effect of cyclic nucleotides. *Biochem. J.* 303: 599–605, 1994.
- EBERHARD, D. A., AND R. W. HOLZ. Intracellular Ca²⁺ activates phospholipase C. Trends Neurosci. 11: 517–520, 1988.
- FADOOL, D. A., AND B. W. ACHE. Plasma membrane inositol 1,4,5trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. *Neuron* 9: 907–918, 1992.
- FADOOL, D. A., AND B. W. ACHE. Inositol 1,3,4,5-tetrakisphosphate-gated channels interact with inositol 1,4,5-trisphosphategated channels in olfactory receptor neurons. *Proc. Natl. Acad.* Sci. USA 91: 9471–9473, 1994.
- FAGAN, K. A., R. MAHEY, AND D. M. F. COOPER. Functional colocalization of transfected Ca²⁺-stimulable adenylyl cyclases with capacitative Ca²⁺ entry sites. *J. Biol. Chem.* 271: 12438–12444, 1996.
- FANGER, C. M., M. HOTH, G. R. CRABTREE, AND R. S. LEWIS. Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels. J. Cell Biol. 131: 655–667, 1995.
- 52. FASOLATO, C., M. HOTH, G. MATTHEWS, AND R. PENNER. Ca²⁺ and Mn²⁺ influx through receptor-mediated activation of nonspecific cation channels in mast cells. *Proc. Natl. Acad. Sci. USA* 90: 3068–3072, 1993.
- FASOLATO, C., M. HOTH, AND R. PENNER. A GTP-dependent step in the activation mechanism of capacitative calcium influx. J. Biol. Chem. 268: 20737–20740, 1993.
- 54. FASOLATO, C., M. HOTH, AND R. PENNER. Multiple mechanisms

- of manganese-induced quenching of fura-2 fluorescence in rat mast cells. *Pftügers Arch.* 423: 225–231, 1993.
- 55. FASOLATO, C., B. INNOCENTI, AND T. POZZAN. Receptor-activated Ca²⁺ influx: how many mechanisms for how many channels? Trends Pharmacol. Sci. 15: 77–83, 1994.
- 56. FERNANDO, K. C., AND G. J. BARRITT. Evidence from studies with hepatocyte suspensions that store-operated Ca²⁺ inflow requires a pertussis toxin-sensitive trimeric G-protein. *Biochem. J.* 303: 351– 356, 1994.
- FRANZIUS, D., M. HOTH, AND R. PENNER. Non-specific effects of calcium entry antagonists in mast cells. *Pftügers Arch.* 428: 433– 438, 1994.
- 58. FUJII, A., H. MATSUMOTO, T. HASHIMOTO, AND Y. AKIMOTO. Tenidap, an anti-inflammatory agent, discharges intracellular Ca²⁺ store and inhibits Ca²⁺ influx in cultured human gingival fibroblasts. J. Pharmacol. Exp. Ther. 275: 1447–1452, 1995.
- GABELLA, G. Quantitative morphological study of smooth muscle cells of the guinea-pig taenia coli. *Cell Tissue Res.* 170: 161–186, 1976.
- 60. GAILLY, P., E. HERMANS, AND J. M. GILLIS. Role of [Ca²⁺]_i in Ca²⁺ stores depletion-Ca²⁺ entry coupling in fibroblasts expressing the rat neurotensin receptor. J. Physiol. (Lond.) 491: 635–646, 1996.
- 61. GERICKE, M., M. OIKE, G. DROOGMANS, AND B. NILIUS. Inhibition of capacitative Ca²⁺ entry by a Cl⁻ channel blocker in human endothelial cells. *Eur. J. Pharmacol.* 17: 381–384, 1994.
- 62. GILON, P., G. S. J. BIRD, X. BIAN, J. L. YAKEL, AND J. W. PUTNEY, JR. The Ca²⁺-mobilizing actions of a Jurkat cell extract on mammalian cells and *Xenopus laevis* oocytes. *J. Biol. Chem.* 270: 8050– 8055, 1995.
- 63. GILÓN, P., J. F. OBIE, X. BIAN, G. S. J. BIRD, J. C. DAGORN, AND J. W. PUTNEY, Jr. Role of cyclic GMP in the control of capacitative Ca²⁺ entry in rat pancreatic acinar cells. *Biochem. J.* 311: 649–656, 1995.
- GIRARD, S., AND D. CLAPHAM. Acceleration of intracellular calcium waves in *Xenopus* oocytes by calcium influx. *Science* 260: 229–232, 1993.
- 65. GLENNON, M. C., G. S. BIRD, C. Y. KWAN, AND J. W. PUTNEY, Jr. Actions of vasopressin and the Ca²⁺-ATPase inhibitor, thapsigargin, on Ca²⁺ signaling in hepatocytes. *J. Biol. Chem.* 267: 8230–8233, 1992.
- 66. GOUY, H., D. CEFAI, S. B. CHRISTENSEN, P. DEBRE, AND G. BIS-MUTH. Ca²⁺ influx in human T lymphocytes is induced independently of inositol phosphate production by mobilization of intracellular Ca²⁺ stores. A study with the Ca²⁺ endoplasmic reticulum-ATPase inhibitor thapsigargin. *Eur. J. Immunol.* 20: 2269–2275, 1990.
- 67. GRAIER, W. F., S. SIMECEK, AND M. STUREK. Cytochrome P-450 mono-oxygenase-regulated signalling of Ca²⁺ entry in human and bovine endothelial cells. J. Physiol. (Lond.) 482: 259–274, 1995.
- GRYNKIEWICZ, G., M. POENIE, AND R. Y. TSIEN. A new generation of Ca²⁺ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–3450, 1985.
- 69. HARDIE, R. C. Indo-1 measurements of absolute resting and light-induced Ca²⁺ concentration in *Drosophila* photoreceptors. *J. Neurosci.* 16: 2924–2933, 1996.
- 70. HARDIE, R. C., AND B. MINKE. The trp gene is essential for a light-activated Ca^{2^+} channel in Drosophila photoreceptors. Neuron~8:~643-651.~1992.
- HARDIE, R. C., AND B. MINKE. Novel Ca²⁺ channels underlying transduction in *Drosophila* photoreceptors: implications for phosphoinositide-mediated Ca²⁺ mobilization. *Trends Neurosci*. 16: 371–376, 1993.
- HAROOTUNIAN, A. T., J. P. KAO, S. PARANJAPE, AND R. Y. TSIEN. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP₃. Science 251: 75–78, 1991.
- HOLMAN, G. D., AND S. W. CUSHMAN. Subcellular localization and trafficking of the GLUT4 glucose transporter isoform in insulinresponsive cells. *Bioessays* 16: 753–759, 1994.
- HORNE, J. H., AND T. MEYER. Luminal calcium regulates the inositol trisphosphate receptor of rat basophilic leukemia cells at a cytosolic site. *Biochemistry* 34: 12738–12746, 1995.
- 75. HOTH, M. Calcium and barium permeation through calcium re-

- lease-activated calcium (CRAC) channels. *Pftügers Arch.* 430: 315–322, 1995.
- HOTH, M., C. FASOLATO, AND R. PENNER. Ion channels and calcium signaling in mast cells. *Ann. NY Acad. Sci.* 707: 198–209, 1993.
- 77. HOTH, M., AND R. PENNER. Depletion of intracellular calcium stores activates a calcium current in mast cells. *Nature* 355: 353–356, 1992.
- HOTH, M., AND R. PENNER. Calcium release-activated calcium current in rat mast cells. J. Physiol. (Lond.) 465: 359–386, 1993.
- HUANG, X. Y., A. D. MORIELLI, AND E. G. PERALTA. Tyrosine kinase-dependent suppression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor. *Cell* 75: 1145– 1156, 1993.
- INNOCENTI, B., T. POZZAN, AND C. FASOLATO. Intracellular ADP modulates the Ca²⁺ release-activated Ca²⁺ current in a temperatureand Ca²⁺-dependent way. J. Biol. Chem. 271: 8582–8587, 1996.
- 81. IRVINE, R. F. How do inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate regulate intracellular Ca²⁺? *Biochem. Soc. Trans.* 17: 6–9, 1989.
- IRVINE, R. F. "Quantal" Ca²⁺ release and the control of Ca²⁺ entry by inositol phosphates: a possible mechanism. *FEBS Lett.* 263: 5– 9, 1990.
- IRVINE, R. F., AND R. M. MOOR. Micro-injection of inositol 1,3,4,5tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca²⁺. *Biochem. J.* 240: 917–920, 1986.
- 84. JACKSON, T. R., S. I. PATTERSON, O. THASTRUP, AND M. R. HAN-LEY. A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca²⁺ without generation of inositol phosphates in NG115–401L neuronal cells. *Biochem. J.* 253: 81–86, 1988.
- JACOB, R. Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. *J. Physiol. (Lond.)* 421: 55–77, 1990.
- JACONI, M. E., D. P. LEW, A. MONOD, AND K. H. KRAUSE. The regulation of store-dependent Ca²⁺ influx in HL-60 granulocytes involves GTP-sensitive elements. *J. Biol. Chem.* 268: 26075–26078, 1993.
- JAYARAMAN, T., E. ONDRIASOVA, K. ONDRIAS, D. J. HARNICK, AND A. R. MARKS. The inositol 1,4,5-trisphosphate receptor is essential for T-cell receptor signaling. *Proc. Natl. Acad. Sci. USA* 92: 6007–6011, 1995.
- 88. JENNER, S., R. W. FARNDALE, AND S. O. SAGE. The effect of calcium-store depletion and refilling with various bivalent cations on tyrosine phosphorylation and Mn²⁺ entry in fura-2-loaded human platelets. *Biochem. J.* 303: 337–339, 1994.
- JENNER, S., R. W. FARNDALE, AND S. O. SAGE. Wortmannin inhibits store-mediated calcium entry and protein tyrosine phosphorylation in human platelets. FEBS Lett. 381: 249–251, 1996.
- 90. KASAI, H., Y. \bar{X} . LI, and Y. MIYASHITA. Subcellular distribution of Ca²⁺ release channels underlying Ca²⁺ waves and oscillations in exocrine pancreas. *Cell* 74: 669–677, 1993.
- KERST, G., K. G. FISCHER, C. NORMANN, A. KRAMER, J. LEIP-ZIGER, AND R. GREGER. Ca²⁺ influx induced by store release and cytosolic Ca²⁺ chelation in HT-29 colonic carcinoma cells. *Pftügers Arch.* 430: 653–665, 1995.
- 92. KHAN, A. A., M. J. SOLOSKI, A. H. SHARP, G. SCHILLING, D. M. SABATINI, S. H. LI, C. A. ROSS, AND S. H. SNYDER. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. *Science Wash. DC* 273: 503–507, 1996.
- KIM, H. Y., D. THOMAS, AND M. R. HANLEY. Chromatographic resolution of an intracellular calcium influx factor from thapsigargin-activated Jurkat cells. Evidence for multiple activities influencing calcium elevation in *Xenopus* oocytes. *J. Biol. Chem.* 270: 9706–9708, 1995.
- 94. KOIKE, Y., Y. OZAKI, R. QI, K. SATOH, K. KUROTA, Y. YATOMI, AND S. KUME. Phosphatase inhibitors suppress Ca²⁺ influx induced by receptor-mediated intracellular Ca²⁺ store depletion in human platelets. *Cell Calcium* 15: 381–390, 1994.
- 95. KOIVISTO, A., D. SIEMEN, AND J. NEDERGAARD. Reversible blockade of the calcium-activated nonselective cation channel in brown fat cells by the sulfhydryl reagents mercury and thimerosal. *Pftügers Arch.* 425: 549–551, 1993.
- 96. KORBMACHER, C., T. VOLK, A. S. SEGAL, E. L. BOULPAEP, AND

- E. FROMTER. A calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. J. Membr. Biol. 146: 29–45, 1995.
- KOUTALOS, Y., AND K. W. YAU. Regulation of sensitivity in vertebrate rod photoreceptors by calcium. *Trends Neurosci*. 19: 73–81, 1996.
- KRAUSE, K. H., W. SCHLEGEL, C. B. WOLLHEIM, T. ANDERSSON, F. A. WALDVOGEL, AND P. D. LEW. Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol trisphosphate generation, calcium ion transients, and cellular activation. J. Clin. Invest. 76: 1348–1354, 1985.
- KUNO, M., AND P. GARDNER. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326: 301–304, 1987.
- 100. KWAN, C. Y., H. TAKEMURA, J. F. OBIE, O. THASTRUP, AND J. W. PUTNEY, JR. Effects of methacholine thapsigargin and lanthanum ion on plasmalemmal and intracellular calcium ion transport in lacrimal acinar cells. Am. J. Physiol. 258 (Cell Physiol. 27): C1006–C1015, 1990
- LAMBERT, D. G., AND S. R. NAHORSKI. Carbachol-stimulated calcium entry in SH-SY5Y human neuroblastoma cells: which route? J. Physiol. Paris 86: 77–82, 1992.
- 102. LEE, K. M., K. TOSCAS, AND M. L. VILLEREAL. Inhibition of brady-kinin- and thapsigargin-induced Ca²⁺ entry by tyrosine kinase inhibitors. *J. Biol. Chem.* 268: 9945–9948, 1993.
- 103. LEE, R. J., AND J. M. OLIVER. Roles for Ca²⁺ stores release and two Ca²⁺ influx pathways in the Fc-epsilon-R1-activated Ca²⁺ responses of RBL-2H3 mast cells. *Mol. Biol. Cell* 6: 825–839, 1995.
- 104. LEPPLE-WIENHUES, A., AND M. D. CAHALAN. Conductance and permeation of monovalent cations through depletion-activated Ca²⁺ channels (ICRAC) in Jurkat T cells. *Biophys. J.* 71: 787–794, 1996.
- 105. LEWIS, R. S., AND M. D. CAHALAN. Mitogen-induced oscillations of cytosolic Ca²⁺ and transmembrane Ca²⁺ current in human leukemic T cells. *Cell Regul.* 1: 99–112, 1989.
- LEWIS, R. S., AND M. D. CAHALAN. Potassium and calcium channels in lymphocytes. *Annu. Rev. Immunol.* 13: 623

 –653, 1995.
- LIU, M. Y., AND M. I. SIMON. Regulation by cAMP-dependent protein kinase of a G-protein-mediated phospholipase C. *Nature* 382: 83–87, 1996.
- LLOPIS, J., G. E. N. KASS, A. GAHM, AND S. ORRENIUS. Evidence for two pathways of receptor-mediated calcium entry in hepatocytes. *Biochem. J.* 284: 243–247, 1992.
- LOCKWICH, T. P., I. H. KIM, AND I. S. AMBUDKAR. Temperaturedependent modification of divalent cation flux in the rat parotid gland basolateral membrane. J. Membr. Biol. 141: 289–296, 1994.
- LOUZAO, M. C., C. M. P. RIBEIRO, G. S. J. BIRD, AND J. W. PUT-NEY, Jr. Cell type-specific modes of feedback regulation of capacitative calcium entry. J. Biol. Chem. 271: 14807–14813, 1996.
- 111. LOW, A. M., R. J. LANG, AND E. E. DANIEL. Influence of internal calcium stores on calcium-activated membrane currents in smooth muscle. *Biol. Signals* 2: 263–271, 1993.
- LUCAS, M., AND V. SANCHEZ-MARGALET. Protein kinase C involvement in apoptosis. Gen. Pharmacol. 26: 881–887, 1995.
- 113. LÜCKHOFF, A., AND D. E. CLAPHAM. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca²⁺-permeable channel. *Nature* 355: 356–358, 1992.
- 114. LÜCKHOFF, A., AND D. E. CLAPHAM. Calcium channels activated by depletion of internal calcium stores in A431 cells. *Biophys. J.* 67: 177–182, 1994.
- 115. MAGNI, M., J. MELDOLESI, AND A. PANDIELLA. Ionic events induced by epidermal growth factor. Evidence that hyperpolarization and stimulated cation influx play a role in the stimulation of cell growth. *J. Biol. Chem.* 266: 6329–6335, 1991.
- MAHAUT-SMITH, M. P., S. O. SAGE, AND T. J. RINK. Receptor-activated single channels in intact human platelets. *J. Biol. Chem.* 265: 10479–10483, 1990.
- MAHAUT-SMITH, M. P., S. O. SAGE, AND T. J. RINK. Rapid ADPevoked currents in human platelets recorded with the nystatin permeabilized patch technique. *J. Biol. Chem.* 267: 3060–3065, 1992.
- 118. MALAYEV, A., AND D. J. NELSON. Extracellular pH modulates the Ca²⁺ current activated by depletion of intracellular Ca²⁺ stores in human macrophages. J. Membr. Biol. 146: 101–111, 1995.

- MARRIOTT, I., AND M. J. MASON. ATP depletion inhibits capacitative Ca²⁺ entry in rat thymic lymphocytes. Am. J. Physiol. 269 (Cell Physiol. 38): C766–C774, 1995.
- 120. MARTIN, S. C., AND T. J. SHUTTLEWORTH. Ca^{2+} influx drives agonist-activated $[Ca^{2+}]_i$ oscillations in an exocrine cell. *FEBS Lett.* 352: 32–36, 1994.
- 121. MARTIN, S. C., AND T. J. SHUTTLEWORTH. Muscarinic-receptor activation stimulates oscillations in K^+ and Cl^- currents which are acutely dependent on extracellular Ca^{2+} in avian salt gland cells. *Pflügers Arch.* 426: 231–238, 1994.
- 122. MARUNAKA, Y. Amiloride-blockable ${\rm Ca^{2^+}}$ -activated Na⁺-permeant channels in the fetal distal lung epithelium. *Pftügers Arch.* 431: 748–756, 1996.
- 123. MASON, M. J., R. C. GARCIA, AND S. GRINSTEIN. Coupling between intracellular calcium stores and the calcium permeability of the plasma membrane comparison of the effects of thapsigargin, 2,5-di-tert-butyl-1 4-hydroquinone and cyclopiazonic acid in rat thymic lymphocytes. *J. Biol. Chem.* 266: 20856–20862, 1991.
- 124. MATHES, C., AND S. H. THOMPSON. The relationship between depletion of intracellular Ca²⁺ stores and activation of Ca²⁺ current by muscarinic receptors in neuroblastoma cells. *J. Gen. Physiol.* 106: 975–993, 1995.
- 125. MATTHEWS, G., E. NEHER, AND R. PENNER. Second messenger-activated calcium influx in rat peritoneal mast cells. *J. Physiol.* (*Lond.*) 418: 105–130, 1989.
- 126. MATTHEWS, G., E. NEHER, AND R. PENNER. Chloride conductance activated by external agonists and internal messengers in rat peritoneal mast cells. *J. Physiol. (Lond.)* 418: 131–144, 1989.
- 127. MATTIE, M., G. BROOKER, AND S. SPIEGEL. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. J. Biol. Chem. 269: 3181–3188, 1994.
- McDONALD, T. V., B. A. PREMACK, AND P. GARDNER. Flash photolysis of caged inositol 1,4,5-trisphosphate activates plasma membrane calcium current in human T cells. *J. Biol. Chem.* 268: 3889–3896. 1993.
- 129. MELVIN, J. E., L. KOEK, AND G. H. ZHANG. A capacitative Ca²⁺ influx is required for sustained fluid secretion in sublingual mucous acini. *Am. J. Physiol.* 261 (*Gastrointest. Liver Physiol.* 24): G1043–G1050, 1991.
- 130. MERRITT, J. E., R. JACOB, AND T. J. HALLAM. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. *J. Biol. Chem.* 264: 1522– 1527, 1989.
- 131. MERY, L., N. MESAELI, M. MICHALAK, M. OPAS, D. P. LEW, AND K. H. KRAUSE. Overexpression of calreticulin increases intracellular Ca²⁺ storage and decreases store-operated Ca²⁺ influx. *J. Biol. Chem.* 271: 9332–9339, 1996.
- 132. MEUCCI, O., A. SCORZIELLO, A. AVALLONE, T. FLORIO, AND G. SCHETTINI. Alpha-1B, but not alpha-1A, adrenoceptor activates calcium influx through the stimulation of a tyrosine kinase-phosphotyrosine phosphatase pathway, following noradrenaline-induced emptying of IP₃ sensitive calcium stores, in PC C13 rat thyroid cell line. Biochem. Biophys. Res. Commun. 209: 630–638, 1995.
- 133. MEYER, T., AND L. STRYER. Calcium spiking. Annu. Rev. Biophys. Chem. 20: 153–174, 1991.
- 134. MISSIAEN, L., C. W. TAYLOR, AND M. J. BERRIDGE. Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. *Nature Lond*. 352: 241–244, 1991.
- MONTELL, C., AND G. M. RUBIN. Molecular characterization of the *Drosophila trp* locus: a putative integral membrane protein re-quired for phototransduction. Neuron 2: 1313–1323, 1989.
- 136. MONTERO, M., S. R. ALONSO-TORRE, J. ALVAREZ, A. SANCHEZ, AND J. GARCIA-SANCHO. The pathway for refilling intracellular Ca²⁺ stores passes through the cytosol in human leukaemia cells. *Pflügers Arch.* 424: 465–469, 1993.
- 137. MONTERO, M., J. ALVAREZ, AND J. GARCIA-SANCHO. Control of plasma-membrane Ca²⁺ entry by the intracellular Ca²⁺ stores. Kinetic evidence for a short-lived mediator. *Biochem. J.* 288: 519–525–1992.
- 138. MONTERO, M., S. J. GARCIA, AND J. ALVAREZ. Transient inhibi-

- tion by chemotactic peptide of a store-operated calcium entry pathway in human neutrophils. J. Biol. Chem. 268: 13055–13061, 1993.
- 139. MONTERO, M., J. GARCIA-SANCHO, AND J. ALVAREZ. Inhibition of the calcium store-operated calcium entry pathway by chemotactic peptide and by phorbol ester develops gradually and independently along differentiation of HL60 cells. J. Biol. Chem. 268: 26911–26919, 1993.
- 140. MONTERO, M., J. GARCIA-SANCHO, AND J. ALVAREZ. Phosphorylation down-regulates the store-operated Ca²⁺ entry pathway of human neutrophils. J. Biol. Chem. 269: 3963–3967, 1994.
- 141. MORRIS, A. P., D. V. GALLACHER, R. F. IRVINE, AND O. H. PET-ERSEN. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca²⁺-dependent K⁺ channels. *Nature* 330: 653–655, 1987.
- 142. MOZHAYEVA, G. N., A. P. NAUMOV, AND Y. A. KURYSHEV. Calcium-permeable channels activated via guanine nucleotide-dependent mechanism in human carcinoma cells. FEBS Lett. 277: 227–229, 1990.
- 143. MOZHAYEVA, G. N., A. P. NAUMOV, AND Y. A. KURYSHEV. Inositol 1,4,5-trisphosphate activates two types of Ca²⁺-permeable channels in human carcinoma cells. *FEBS Lett.* 277: 233–234, 1990.
- 144. MUNSHI, R., M. A. DEBERNARDI, AND G. BROOKER. P-2U-Purinergic receptors on C6–2B rat glioma cells: modulation of cytosolic Ca²⁺ and cAMP levels by protein kinase C. Mol. Pharmacol. 44: 1185–1191, 1993.
- 145. NAUMOV, A. P., K. I. KISELYOV, A. G. MAMIN, E. V. KAZNACHEY-EVA, Y. A. KURYSHEV, AND G. N. MOZHAYEVA. ATP-operated calcium-permeable channels activated via a guanine nucleotide-dependent mechanism in rat macrophages. *J. Physiol. (Lond.)* 486: 339– 347, 1995.
- NEHER, E. The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum. J. Physiol. (Lond.) 395: 193–214, 1988.
- NEIIER, E. The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34: 1423-1442, 1995.
- NEHER, E., AND G. J. AUGUSTINE. Calcium gradients and buffers in bovine chromaffin cells. J. Physiol. (Lond.) 450: 273–301, 1992.
- 149. NIEMEYER, B. A., E. SUZUKI, K. SCOTT, K. JALINK, AND C. S. ZUKER. The *Drosophila* light-activated conductance is composed of the two channels trp and trpl. *Cell* 85: 651–659, 1996.
- NUNN, D. L., AND C. W. TAYLOR. Luminal Ca²⁺ increases the sensitivity of Ca²⁺ stores to inositol 1,4,5-trisphosphate. *Mol. Pharmacol.* 41: 115–119, 1992.
- 151. OIKE, M. M. G., G. DROOGMANS, AND B. NILIUS. Calcium entry activated by store depletion in human umbilical vein endothelial cells. *Cell Calcium* 16: 367–376, 1994.
- 152. OLDERSHAW, K. A., AND C. W. TAYLOR. Luminal $\mathrm{Ca^{2+}}$ increases the affinity of inositol 1,4,5-trisphosphate for its receptor. *Biochem. J.* 292: 631–633, 1993.
- 153. PANDOL, S. J., A. GUKOVSKAYA, T. D. BAHNSON, AND V. E. DI-ONNE. Cellular mechanisms mediating agonist-stimulated calcium influx in the pancreatic acinar cell. *Ann. NY Acad. Sci.* 713: 41– 48, 1994.
- 154. PARADISO, A. M., S. J. MASON, E. R. LAZAROWSKI, AND R. C. BOUCHER. Membrane-restricted regulation of $\mathrm{Ca^{2^+}}$ release and influx in polarized epithelia. *Nature* 377: 643–646, 1995.
- 155. PAREKH, A. B. Interaction between capacitative Ca²⁺ influx and Ca²⁺-dependent Cl⁻ currents in *Xenopus* oocytes. *Pflügers Arch.* 430: 954–963, 1995.
- 156. PAREKH, A. B., M. FOGUET, H. LUBBERT, AND W. STUEHMER. Ca²⁺ oscillations and Ca²⁺ influx in *Xenopus* oocytes expressing a novel 5-hydroxytryptamine receptor. *J. Physiol. (Lond.)* 469: 653– 671, 1993.
- 157. PAREKH, A. B., AND R. PENNER. Activation of store-operated calcium influx at resting InsP₃ levels by sensitization of the InsP₃ receptor in rat basophilic leukaemia cells. *J. Physiol. (Lond.)* 489: 377–382, 1995.
- 158. PAREKH, A. B., AND R. PENNER. Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells. *Proc. Natl. Acad. Sci. USA* 92: 7907–7911, 1995.
- 159. PAREKH, A. B., AND R. PENNER. Regulation of store-operated calcium currents in mast cells. In: Organellar Ion Channels and

- Transporters, edited by B. E. Ehrlich and D. E. Clapham. New York: Rockefeller Univ. Press, 1996, p. 231–239.
- PAREKH, A. B., AND H. TERLAU. Effects of protein phosphorylation on the regulation of capacitative calcium influx in *Xenopus* oocytes. *Pflügers Arch.* 432: 14–25, 1996.
- 161. PAREKH, A. B., H. TERLAU, AND W. STUEHMER. Depletion of InsP₃ stores activates a calcium and potassium current by means of a phosphatase and a diffusible messenger. *Nature* 364: 814–818, 1993.
- 162. PARTISETI, M., D. F. LE, C. HIVROZ, A. FISCHER, H. KORN, AND D. CHOQUET. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J. Biol. Chem. 269: 32327–32335, 1994.
- PENNER, R., C. FASOLATO, AND M. HOTH. Calcium influx and its control by calcium release. *Curr. Opin. Neurobiol.* 3: 368–374, 1993.
- 164. PENNER, R., G. MATTHEWS, AND E. NEHER. Regulation of calcium influx by second messengers in rat mast cells. *Nature* 334: 499–504, 1988.
- 165. PENNER, R., AND E. NEHER. The role of calcium in stimulussecretion coupling in excitable and non-excitable cells. J. Exp. Biol. 139: 329–345, 1988.
- PENNER, R., AND E. NEHER. Secretory responses of rat peritoneal mast cells to high intracellular calcium. FEBS Lett. 226: 307–313, 1988
- 167. PEPPELENBOSCH, M. P., L. G. TERTOOLEN, J. DEN HERTOG, AND S. W. DE LAAT. Epidermal growth factor activates calcium channels by phospholipase A₂/5-lipoxygenase-mediated leukotriene C₄ production. Cell 69: 295–303, 1992.
- PETERSEN, C. C. II., AND M. J. BERRIDGE. The regulation of capacitative calcium entry by calcium and protein kinase C in Xenopus oocytes. J. Biol. Chem. 269: 32246-32253, 1994.
- 169. PETERSEN, C. C. H., AND M. J. BERRIDGE. G-protein regulation of capacitative calcium entry may be mediated by protein kinases A and C in *Xenopus* oocytes. *Biochem. J.* 307: 663–668, 1995.
- 170. PETERSEN, C. C. H., AND M. J. BERRIDGE. Capacitative calcium entry is colocalised with calcium release in *Xenopus* oocytes: evidence against a highly diffusible calcium influx factor. *Pflügers* Arch. 432: 286–292, 1996.
- 171. PETERSEN, C. C. H., M. J. BERRIDGE, M. F. BORGESE, AND D. L. BENNETT. Putative capacitative calcium entry channels: expression of *Drosophila trp* and evidence for the existence of vertebrate homologues. *Biochem. J.* 311: 41–44, 1995.
- 172. PETERSEN, O. H. Does inositol tetrakisphosphate play a role in the receptor-mediated control of calcium mobilization? *Cell Calcium* 10: 375–383, 1989.
- 173. PETERSEN, O. H. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. *J. Physiol. (Lond.)* 448: 1–51, 1992.
- 174. PFEIFFER, F., A. SCHMID, AND I. SCHULZ. Capacitative Ca²⁺ influx and a Ca²⁺-dependent nonselective cation pathway are discriminated by genistein in mouse pancreatic acinar cells. *Pftügers Arch.* 430: 916–922, 1995.
- 175. PHILIPP, S., A. CAVALIÉ, M. FREICHEL, U. WISSENBACH, S. ZIM-MER, C. TROST, A. MARQUART, M. MURAKAMI, AND V. FLOCK-ERZI. A mammalian capacitative calcium entry channel homologous to *Drosophila* trp and trpl. *EMBO J.* 15: 6166–6171, 1996.
- 176. PHILLIPS, A. M., A. BULL, AND L. E. KELLY. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8: 631–642, 1992.
- 177. POGGIOLI, J., AND J. W. PUTNEY, JR. Net calcium fluxes in rat parotid acinar cells: evidence for a hormone-sensitive calcium pool in or near the plasma membrane. *Pflügers Arch.* 392: 239–243, 1982.
- 178. POLLOCK, J. A., A. ASSAF, A. PERETZ, C. D. NICHOLS, M. H. MO-JET, R. C. HARDIE, AND B. MINKE. TRP, a protein essential for inositide-mediated Ca²⁺ influx is localized adjacent to the calcium stores in *Drosophila* photoreceptors. *J. Neurosci.* 15: 3747–3760, 1995.
- 179. PREMACK, B. A., T. V. McDONALD, AND P. GARDNER. Activation of Ca²⁺ current in Jurkat T cells following the depletion of Ca²⁺ stores by microsomal Ca²⁺-ATPase inhibitors. *J. Immunol.* 152: 5226–5240, 1994.

- 180. PREMACK, B. A., D. W. THOMAS, M. R. HANLEY, AND P. GARD-NER. Ca²⁺ channel modulation by calcium influx factors (CIFs) produced following the depletion of intracellular Ca²⁺ stores (Abstract). *Biophys. J.* 68: A54, 1995.
- 181. PRESTON, S. F., R. I. SHAAFI, AND R. D. BERLIN. Regulation of calcium influx during mitosis calcium influx and depletion of intracellular calcium stores are coupled in interphase but not mitosis. *Cell Regul.* 2: 915–926, 1991.
- 182. PUTNEY, J. W., Jr. Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine. *J. Pharmacol. Exp. Ther.* 198: 375–384, 1976.
- 183. PUTNEY, J. W., JR. Stimulation of ⁴⁵Ca influx in rat parotid gland by carbachol. *J. Pharmacol. Exp. Ther.* 199: 526–537, 1976.
- 184. PUTNEY, J. W., Jr. Muscarinic, alpha-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. *J. Physiol. (Lond.)* 268: 139–149, 1977.
- 185. PUTNEY, J. W., Jr. A model for receptor-regulated calcium entry. *Cell Calcium* 7: 1–12, 1986.
- PUTNEY, J. W., JR. Capacitative calcium entry revisited. Cell Calcium 11: 611–624, 1990.
- RANDRIAMAMPITA, C., AND R. Y. TSIEN. Emptying of intracellular calcium stores release a novel small messenger that stimulates calcium influx. *Nature* 364: 809–814, 1993.
- 188. RANDRIAMAMPITA, C., AND R. Y. TSIEN. Degradation of a calcium influx factor (CIF) can be blocked by phosphatase inhibitors or chelation of Ca²⁺. *J. Biol. Chem.* 270: 29–32, 1995.
- 189. RANGANATHAN, R., D. M. MALICKI, AND C. S. ZUKER. Signal transduction in *Drosophila* photoreceptors. *Annu. Rev. Neurosci.* 18: 283–317, 1995.
- 190. REALE, V., C. N. HALES, AND M. L. ASHFORD. The effects of pyridine nucleotides on the activity of a calcium-activated nonselective cation channel in the rat insulinoma cell line, CRI-G1. J. Membr. Biol. 142: 299–307, 1994.
- 191. REINSPRECHT, M., M. H. ROHN, R. J. SPADINGER, I. PECHT, H. SCHINDLER, AND C. ROMANIN. Blockade of capacitive Ca²⁺ influx by Cl⁻ channel blockers inhibits secretion from rat mucosal-type mast cells. *Mol. Pharmacol.* 47: 1014–1020, 1995.
- 192. RIVERA, A. A., C. R. WHITE, L. L. GUEST, T. S. ELTON, AND R. B. MARCHASE. Hyperglycemia alters cytoplasmic Ca²⁺ responses to capacitative Ca²⁺ influx in rat aortic smooth muscle cells. *Am. J. Physiol.* 269 (Cell Physiol. 38): C1482–C1488, 1995.
- 193. ROHACS, T., A. BAĞO, F. DEAK, L. HUNYADY, AND A. SPAT. Capacitative Ca²⁺ influx in adrenal glomerulosa cells: possible role in angiotensin II response. Am. J. Physiol. 267 (Cell Physiol. 36): C1246-C1252, 1994.
- 194. ROSSIER, M., C. P. PYTHON, M. M. BURNAY, W. SCHLEGEL, M. B. VALLOTTON, AND A. M. CAPPONI. Thapsigargin inhibits voltage-activated calcium channels in adrenal glomerulosa cells. *Biochem. J.* 296: 309–312, 1993.
- 195. SARGEANT, P., W. D. CLARKSON, S. O. SAGE, AND J. W. M. HEEM-SKERK. Calcium influx evoked by calcium store depletion in human platelets is more susceptible to cytochrome P-450 inhibitors than receptor-mediated calcium entry. Cell Calcium 13: 553-564, 1992.
- 196. SARGEANT, P., R. W. FARNDALE, AND S. O. SAGE. ADP- and thapsigargin-evoked Ca²⁺ entry and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets. *J. Biol. Chem.* 268: 18151–18156, 1993.
- 197. SARGEANT, P., R. W. FARNDALE, AND S. O. SAGE. The tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and genistein reduce thrombin-evoked tyrosine phosphorylation and Ca²⁺ entry in human platelets. FEBS Lett. 315: 242–246, 1993.
- 198. SARGEANT, P., R. W. FARNDALE, AND S. O. SAGE. Calcium store depletion in dimethyl BAPTA-loaded human platelets increases protein tyrosine phosphorylation in the absence of a rise in cytosolic calcium. *Exp. Physiol.* 79: 269–272, 1994.
- 199. SARKADI, B., A. TORDAI, L. HOMOLYA, O. SCHARFF, AND G. GARDOS. Calcium influx and intracellular calcium release in anti-CD3 antibody-stimulated and thapsigargin-treated human T lymphoblasts. J. Membr. Biol. 123: 9–21, 1991.
- SCHILLING, W. P., O. A. CABELLO, AND L. RAJAN. Depletion of the inositol-1,4,5-trisphosphate-sensitive intracellular calcium store

- in vascular endothelial cells activates the agonist-sensitive calcium influx pathway. *Biochem. J.* 284: 521–530, 1992.
- 201. SCHOEFL, C., L. ROESSIG, E. POTTER, A. VON ZUR MUHLEN, AND G. BRABANT. Extracellular ATP and UTP increase cytosolic free calcium by activating a common P_{2u}-receptor in single human thyrocytes. *Biochem. Biophys. Res. Commun.* 213: 928–934, 1995.
- 202. SCHOEFL, C., L. ROESSIG, Z. M. A. VON, W. BEIL, J. JAEHNE, M. P. MANNS, AND S. WAGNER. Extracellular nucleotides increase cytosolic free calcium by activating P_{2u}-receptors in single human gastric mucous cells. *Biochem. Biophys. Res. Commun.* 216: 636–641, 1995.
- SCHOMERUS, C., E. LAEDTKE, AND H. W. KORF. Calcium responses of isolated, immunocytochemically identified rat pinealocytes to noradrenergic, cholinergic and vasopressinergic stimulations. *Neurochem. Int.* 27: 163–175, 1995.
- SHANKAR, V. S., C. L. H. HUANG, O. A. ADEBANJO, M. PAZIA-NAS, AND M. ZAIDI. Calcium influx and release in isolated rat osteoclasts. *Exp. Physiol.* 79: 537–545, 1994.
- SHARMA, N. R., AND M. J. DAVIS. Substance P-induced calcium entry in endothelial cells is secondary to depletion of intracellular stores. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H962–H973, 1995.
- 206. SHIBATA, K., S. KITAYAMA, K. MORITA, M. SHIRAKAWA, H. OKA-MOTO, AND T. DOHI. Regulation by protein kinase C of plateletactivating factor- and thapsigargin-induced calcium entry in rabbit neutrophils. *Jpn. J. Pharmacol.* 66: 273–276, 1994.
- SIIIEII, B. II., AND M. Y. ZIIU. Regulation of the TRP Ca²⁺ channel by INAD in *Drosophila* photoreceptors. *Neuron* 16: 991–998, 1996.
- SHUTTLEWORTH, T. J. Calcium release from inositol trisphosphate-sensitive stores is not modulated by intraluminal calcium concentration. J. Biol. Chem. 267: 3573–3576, 1992.
- 209. SHUTTLEWORTH, T. J. Temporal relationships between Ca²⁺ store mobilization and Ca²⁺ entry in an exocrine cell. *Cell Calcium* 15: 457–466, 1994.
- 210. SHUTTLEWORTH, T. J., AND J. L. THOMPSON. Evidence for a non-capacitative Ca²⁺ entry during Ca²⁺ oscillations. *Biochem. J.* 316: 819–824, 1996.
- 211. SIMPSON, P. B., R. A. J. CHALLISS, AND S. R. NAHORSKI. Divalent cation entry in cultured rat cerebellar granule cells measured using Mn²⁺ quench of fura 2 fluorescence. *Eur. J. Neurosci.* 7: 831–840, 1995
- 212. SINKINS, W. G., L. VACA, Y. HU, D. L. KUNZE, AND W. P. SCHIL-LING. The COOH-terminal domain of *Drosophila* TRP channels confers thapsigargin sensitivity. *J. Biol. Chem.* 271: 2955–2960, 1996.
- 213. SNYDER, P. M., K. H. KRAUSE, AND M. J. WELSH. Inositol trisphosphate isomers, but not inositol 1,3,4,5-tetrakisphosphate, induce calcium influx in *Xenopus laevis* oocytes. *J. Biol. Chem.* 263: 11048–11051, 1988.
- 214. SOMASUNDARAM, B., J. C. NORMAN, AND M. P. MAHAUT-SMITH. Primaquine, an inhibitor of vesicular transport, blocks the calciumrelease-activated current in rat megakaryocytes. *Biochem. J.* 309: 725–729, 1995.
- 215. SPIEGEL, S., D. FOSTER, AND R. KOLESNICK. Signal transduction through lipid second messengers. *Curr. Opin. Cell Biol.* 8: 159–167, 1996.
- 216. STEPHENS, J. M., AND P. F. PILCH. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. *Endocr. Rev.* 16: 529–546, 1995.
- 217. STRIGGOW, F., AND R. BOHNENSACK. Inositol 1,4,5-trisphosphate activates receptor-mediated calcium entry by two different pathways in hepatocytes. *Eur. J. Biochem.* 222: 229–234, 1994.
- 218. TAKEMURA, H., A. R. HUGHES, O. THASTRUP, AND J. W. PUT-NEY, Jr. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. *J. Biol. Chem.* 264: 12266–12271, 1989.
- TAKEMURA, H., AND J. W. PUTNEY, Jr. Capacitative calcium entry in parotid acinar cells. *Biochem. J.* 258: 409–412, 1989.
- 220. TAKUWA, N., A. IWAMOTO, M. KUMADA, K. YAMASHITA, AND Y. TAKUWA. Role of Ca²⁺ influx in bombesin-induced mitogenesis in Swiss 3T3 fibroblasts. *J. Biol. Chem.* 266: 1403–1409, 1991.
- 221. TEPIKIN, A. V., S. G. VORONINA, D. V. GALLACHER, AND O. H.

- PETERSEN. Pulsatile Ca^{2+} extrusion from single pancreatic acinar cells during receptor-activated cytosolic Ca^{2+} spiking. *J. Biol. Chem.* 267: 14073–14076, 1992.
- 222. THASTRUP, O., P. J. CULLEN, B. K. DROBAK, M. R. HANLEY, AND A. P. DAWSON. Thapsigargin, a tumor promoter, discharges intracellular Ca²⁺ stores by specific inhibition of the endoplasmic reticulum Ca²⁺-ATPase. *Proc. Natl. Acad. Sci. USA* 87: 2466–2470, 1990.
- 223. THASTRUP, O., A. P. DAWSON, O. SCHARFF, B. FODER, P. J. CULLEN, B. K. DROBAK, P. J. BJERRUM, S. B. CHRISTENSEN, AND M. R. HANLEY. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. *Agents Actions* 27: 17–23, 1989.
- 224. THOMAS, A. P. Enhancement of the inositol 1,4,5-trisphosphate-releasable Ca^{2+} pool by GTP in permeabilized hepatocytes. *J. Biol. Chem.* 263: 2704–2711, 1988.
- 225. THOMAS, D., AND M. R. HANLEY. Evaluation of calcium influx factors from stimulated Jurkat T-lymphocytes by microinjection into *Xenopus* oocytes. *J. Biol. Chem.* 270: 6429–6432, 1995.
- 226. THORN, P. Ca²⁺ influx during agonist and Ins(2,4,5)P₃-evoked Ca²⁺ oscillations in HeLa epithelial cells. *J. Physiol. (Lond.)* 482: 275–281, 1995.
- 227. THORN, P., A. M. LAWRIE, P. M. SMITH, D. V. GALLACHER, AND O. H. PETERSEN. Local and global cytosolic Ca²⁺ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. *Cell* 74: 661–668, 1993.
- TORNQUIST, K. Modulatory effect of protein kinase C on thapsigargin-induced calcium entry in thyroid FRTL-5 cells. *Biochem. J.* 290: 443–447, 1993.
- 229. TSIEN, R. W., D. LIPSCOMBE, D. MADISON, K. BLEY, AND A. FOX. Reflections on Ca²⁺-channel diversity, 1988–1994. Trends Neurosci. 18: 52–54, 1995.
- 230. UFRET-VINCENTY, C. A., A. D. SHORT, A. ALFONSO, AND D. L. GILL. A novel Ca²⁺ entry mechanism is turned on during growth arrest induced by Ca²⁺ pool depletion. *J. Biol. Chem.* 270: 26790–26793, 1995.
- VACA, L. Calmodulin inhibits calcium influx current in vascular endothelium. FEBS Lett. 390: 289–293, 1996.
- 232. VACA, L., AND D. L. KUNZE. Depletion and refilling of intracellular Ca²⁺ stores induce oscillations of Ca²⁺ current. Am. J. Physiol. 264 (Heart Circ. Physiol. 33): H1319-H1322, 1993.
- 233. VACA, L., AND D. L. KUNZE. Depletion of intracellular Ca²⁺ stores activates a Ca²⁺-selective channel in vascular endothelium. Am. J. Physiol. 267 (Cell Physiol. 36): C920–C925, 1994.
- 234. VACA, L., AND D. L. KUNZE. IP₃-activated Ca²⁺ channels in the plasma membrane of cultured vascular endothelial cells. *Am. J. Physiol.* 269 (*Cell Physiol.* 38): C733–C738, 1995.
- 235. VACA, L., W. G. SINKINS, Y. HU, D. L. KUNZE, AND W. P. SCHIL-LING. Activation of recombinant trp by thapsigargin in Sf9 insect cells. Am. J. Physiol. 267 (Cell Physiol. 36): C1501–C1505, 1994.
- 236. VAN MARREWIJK, W. J., A. T. VAN DEN BROEK, AND D. J. VAN DER HORST. Adipokinetic hormone-induced influx of extracellular calcium into insect fat body cells is mediated through depletion of intracellular calcium stores. *Cell Signal*. 5: 753–761, 1993.
- 237. VERJANS, B., C. C. II. PETERSEN, AND M. J. BERRIDGE. Overexpression of inositol 1,4,5-trisphosphate 3-kinase in *Xenopus* oocytes inhibits agonist-evoked capacitative calcium entry. *Biochem. J.* 304: 679–682, 1994.

- 238. VILLALOBOS, C., R. FONTERIZ, M. G. LOPEZ, A. G. GARCIA, AND J. GARCIA-SANCHO. Inhibition of voltage-gated Ca²⁺ entry into GH₃ and chromaffin cells by imidazole antimycotics and other cytochrome P-450 blockers. FASEB J. 6: 2742–2747, 1992.
- 239. VILLALOBOS, C., AND S. J. GARCIA. Capacitative Ca²⁺ entry contributes to the Ca²⁺ influx induced by thyrotropin-releasing hormone (TRH) in GH₃ pituitary cells. *Pftugers Arch.* 430: 923–935, 1995.
- 240. VON TSCHARNER, V., B. PROD'HOM, M. BAGGIOLINI, AND H. REUTER. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. *Nature* 324: 369–372, 1986.
- VOSTAL, J. G., W. L. JACKSON, AND N. R. SHULMAN. Cytosolic and stored calcium antagonistically control tyrosine phosphorylation of specific platelet proteins. J. Biol. Chem. 266: 16911–16916, 1991.
- 242. WALLERT, M. A., M. J. ACKERMAN, D. KIM, AND D. E. CLAPHAM. Two novel cardiac atrial K⁺ channels, IK.AA and IK.PC. *J. Gen. Physiol.* 98: 921–939, 1991.
- 243. WORLEY, J. F., III, M. S. McINTYRE, B. SPENCER, AND I. D. DUKES. Depletion of intracellular Ca²⁺ stores activates a maitotoxin-sensitive nonselective cationic current in beta-cells. *J. Biol. Chem.* 269: 32055–32058, 1994.
- 244. XU, X., K. KITAMURA, K. S. LAU, S. MUALLEM, AND R. T. MILLER. Differential regulation of Ca²⁺ release-activated Ca²⁺ influx by heterotrimeric G proteins. *J. Biol. Chem.* 270: 29169–29175, 1995.
- 245. XU, X., R. A. STAR, G. TORTORICI, AND S. MUALLEM. Depletion of intracellular Ca²⁺ stores activates nitric-oxide synthase to generate cGMP and regulate Ca²⁺ influx. *J. Biol. Chem.* 269: 12645–12653, 1994.
- 246. YAO, Y., AND I. PARKER. Ca²⁺ influx modulation of temporal and spatial patterns of inositol trisphosphate-mediated Ca²⁺ liberation in *Xenopus* oocytes. *J. Physiol. (Lond.)* 476: 17–28, 1994.
- 247. YULE, D. I., E. T. KIM, AND J. A. WILLIAMS. Tyrosine kinase inhibitors attenuate "capacitative" Ca²⁺ influx in rat pancreatic acinar cells. *Biochem. Biophys. Res. Commun.* 202: 1697–1704, 1994.
- 248. ZHANG, L., AND M. A. McCLOSKEY. Immunoglobulin E receptoractivated calcium conductance in rat mast cells. J. Physiol. (Lond.) 483: 59–66, 1995.
- 249. ZHU, X., M. JIANG, M. PEYTON, G. BOULAY, R. HURST, E. STE-FANI, AND L. BIRNBAUMER. *Trp*, a novel mammalian gene family essential for agonist-activated capacitative Ca²⁺ entry. *Cell* 85: 661–671, 1996.
- 250. ZITT, C., A. ZOBEL, A. G. OBUKHOV, C. HARTENECK, F. KALK-BRENNER, A. LUCKHOFF, AND G. SCHULTZ. Cloning and functional expression of a human Ca²⁺-permeable cation channel activated by calcium store depletion. *Neuron* 16: 1189–1196, 1996.
- 251. ZUKER, C. S. The biology of vision in *Drosophita*. *Proc. Natl. Acad. Sci. USA* 93: 571–576, 1996.
- 252. ZWEIFACH, A., AND R. S. LEWIS. Mitogen-regulated Ca²⁺ current of T lymphocytes is activated by depletion of intracellular Ca²⁺ stores. *Proc. Natl. Acad. Sci. USA* 90: 6295–6299, 1993.
- 253. ZWEIFACH, A., AND R. S. LEWIS. Rapid inactivation of depletion-activated calcium current ($I_{\rm CRAC}$) due to local calcium feedback. *J. Gen. Physiol.* 105: 209–226, 1995.
- ZWEIFACH, A., AND R. S. LEWIS. Slow calcium-dependent inactivation of depletion-activated calcium current. Store-dependent and
 -independent mechanisms. J. Biol. Chem. 270: 14445–14451, 1995.
- 255. ZWEIFACH, A., AND R. S. LEWIS. Calcium-dependent potentiation of store-operated calcium channels in T lymphocytes. J. Gen. Physiol. 107: 597–610, 1996.