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Preface

Ca2+ homeostasis and cancer

Cellular calcium (Ca2+) homeostasis is regulated through a variety of
extracellular and intracellular mechanisms. In tumors, a change in the cell
microenvironment (e.g. pH, pO2, mechanical stress) is generally associated
with the activation of transmembrane receptors and Ca2+-permeable
channels that can alter Ca2+ homeostasis. Moreover, other ion channels
specific for conducting Cl−, K+, Mg2+ and others are hijacked from their
primary physiological function to alter Ca2+ homeostasis and contribute
to tumorigenesis. In this special issue entitled “Ca2+ homeostasis and
cancer”, some of these mechanisms are presented. Cancer progression
induces a remodeling of the microenvironment that becomes stiffer than
the healthy tissue. This remodeling is typically associated with an acid-
ification of the interstitial fluid and an increase of mechanical strain. In her
review, Glitsch describes how the activation of mechano- and proton-
sensing proteins contribute to the aberrant Ca2+ signals in cancer [1].
Petho el al. present an overview of mechanosensitive channels involved in
cancer progression [2]. External Ca2+ can also contribute to the re-
modeling of the tumor microenvironment as discussed by Anract et al.
focusing on the link between microcalcifications, Ca2+-sensing receptor
and prostate cancer progression [3]. Ca2+ channels can also interact with
other plasma membrane components and form novel signaling complexes
that contribute to cancer progression. In their extensive review, Crottès
and Jan describe the multifaceted role of the Ca2+-activated Cl− channel
TMEM16A in cancers [4] while Saberbaghi et al. focused on the role of
Cl− channels in glioma [5]. Ca2+ channels can also form functional
complex with Ca2+-activated K+ channels to fuel membrane hyperpo-
larization and further enhance Ca2+ entry. The importance of lipids in
Ca2+/K+ channel interaction in ovarian cancer is presented by Kouba
et al. [6]. Moreover there are a variety of ion channel auxiliary subunits
that can be dysregulated in cancer as extensively described by Haworth
and Brackenbury [7]. Ca2+ homeostasis may be disrupted by dysregula-
tion in magnesium (Mg2+) homeostasis due to aberrant expression and
function of Mg2+ transporters in cancer, as presented by Trapani and Wolf
[8]. Finally, some of these ion channels can be targeted by toxins with
anti-cancer activity as presented by Srairi-Abid et al. [9].
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