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Abstract

The channel kinases TRPM6 and TRPM7 are fusion proteins with an ion

transport domain and an enzymatically active kinase domain. TRPM7 has

been found in every mammalian tissue investigated to date. The two-in-one

protein structure, the ubiquitous expression profile, and the protein’s unique

biophysical characteristics that enable divalent ion transport involve TRPM7 in

a plethora of (patho)physiological processes. With its prominent role in cellular

and systemic magnesium homeostasis, TRPM7 emerges as a key player in

embryonic development, global ischemia, cardiovascular disease, and cancer.

Keywords

Magnesium • Calcium • Trace metals • Divalent cation • Transient Receptor

Potential Channel • Adenosine triphosphate • Channel kinase • Magnesium

homeostasis • Embryogenesis • Ischemia • Breast cancer

1 Gene

The official name of the TRPM7 gene is “transient receptor potential cation

channel, subfamily M, member 7.” In Homo sapiens, the TRPM7 gene is located

on chromosome 15q21.2 (NCBI Gene ID 54822). Previous names for the gene

include CHAK1, TRP-PLIK, and LTRPC7 (Ryazanov 2002; Runnels et al. 2001;

Nadler et al. 2001). The human TRPM7 gene encodes an 1,865 amino acid protein

(Schmitz et al. 2005). The molecule is unique in that it contains an ion transport

domain (InterPro IPR005821) in its N-terminal section and an enzymatically active

MHCK/EF2 kinase domain (InterPRo IPR004166) in the C-terminal section. Only

two other mammalian genes (there are numerous channel enzymes in simple

organisms) are known to code for ion channel and enzyme domain fusion proteins,

namely, TRPM7’s paralog genes TRPM6 and TRPM2 (Perraud et al. 2001;

Schlingmann et al. 2002; Walder et al. 2002), described elsewhere in this book.

TRPM7 gene orthologs with human amino acid sequence similarity of 94.3 % to

99.89 % have been identified in chimpanzee (Pan troglodytes), mouse (Mus
musculus), rat (Rattus norvegicus), cow (Bos taurus), and dog (Canis familiaris;
GeneCards). In zebrafish (Danio rerio), an important model organism in biology,

TRPM7 is located on chromosome 18 and shares 75 % amino acid sequence

identity with the human TRPM7 gene.

Virtually nothing is known about whether the kinase and channel encoding

portions of the TRPM7 gene domains can be expressed independently from each

other. A splice variant in rat lacking the channel domain has been reported (Runnels

et al. 2001). Human Trpm7 has 9 predicted splice variants (http://www.ensembl.

org: ENST00000561267, TRPM7-001 through TRPM7-009); however, aside from

the 1,865 amino acid encoding protein, the function of any of these variants remains

unexplored. Finally, no genes coding for TRPM7 auxiliary subunits are known

(Chubanov et al. 2004; Schmitz et al. 2005).
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2 Expression

Early investigations of human tissue and cell lines by PCR with reverse transcrip-

tion indicated a ubiquitous distribution pattern of TRPM7 transcripts (Nadler

et al. 2001; Runnels et al. 2001). A comprehensive quantitative real-time reverse

transcriptase polymerase chain reaction (qRT-PCR) analysis of human tissue

showed that TRPM7 is widely distributed in the central nervous system as well as

in the periphery, with highest expression levels in the heart, pituitary, bone, and

adipose tissue (Fonfria et al. 2006).

TRPM7 is also ubiquitously expressed across mouse organs as investigated by

qRT-PCR. These data show that, compared to other members of the TRP gene

family, TRPM7 is the most abundantly expressed TRP channel in the majority of

adult mouse organs investigated (Kunert-Keil et al. 2006). Particularly, mouse

intestine, lung, kidney, and brain have strong TRPM7 expression (Kunert-Keil

et al. 2006), as well as testis (Jang et al. 2012). While TRPM7 levels can vary

significantly between mouse strains (Kunert-Keil et al. 2006), they seem quite

constant within a particular type of strain (Vandewauw et al. 2013). Along with

TRPM2, TRPM4, and TRPM8, mouse trigeminal ganglia show very high expres-

sion of TRPM7, and this gene product has a stronger representation in dorsal root

ganglia along the vertebral column compared to other members of the TRPM

family (Vandewauw et al. 2013). Gene expression patterns of TRPM7 during

mouse development seem to occur in two waves, peaking at embryonic day

18 (E12), raising again after postnatal day 4, and maintaining stable levels into

adulthood (Staaf et al. 2010). Additional studies have confirmed TRPM7 RNA

expression in adult rat prostate tissue (Wang et al. 2007) and intralobar pulmonary

arterial and aortic smooth muscle (Yang et al. 2006), as well as rumen epithelial

cells isolated from sheep (Schweigel et al. 2008).

The assessment of TRPM7 at the protein level has been more challenging due to

the paucity of highly specific antibodies. Fortunately, due to the electrogenic nature

of TRPM7’s ion channel function, biophysical techniques such as whole-cell patch-

clamp technique and single-channel measurements allow an estimate of the number

of proteins in the plasma membrane of single live cells (Hamill et al. 1981).

Endogenous TRPM7-like currents were first reported in renal cells (human

HEK293), mast cells (rat RBL-2H3), and T lymphocytes (human Jurkat T) (Nadler

et al. 2001). Due to the inhibition of these currents by magnesium (Mg), Mg·ATP,

as well as their ability to conduct metal ions, native TRPM7-like currents were

coined magnesium-nucleotide-regulated metal ion currents [MagNuM (Nadler

et al. 2001; Hermosura et al. 2002)] and also magnesium-inhibited cation current

[MIC (Kozak et al. 2002b)]. Subsequent investigation reported native currents with

biophysical characteristics ascribed to TRPM7 in a wide variety of cell types,

including the heart (Gwanyanya et al. 2004), brain (Aarts et al. 2003), and intestine

(Kim et al. 2009).

Of the three cell types in which MagNuM currents were originally described,

Jurkat T cells had the highest current density under the experimental conditions

used (Nadler et al. 2001). Taking into account a single-channel conductance of
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40 pS (Nadler et al. 2001; Li et al. 2006), this still amounts to only an estimated

30 active channels in the plasma membrane per T cell and 40 channels per HEK293

or RBL-2H3 cell. Subcellular location of TRPM7 protein in heterologous

overexpression systems is to be expected (Chubanov et al. 2007), and evidence

exists of native functional subcellular location in synaptic vesicles of sympathetic

rat neurons (Krapivinsky et al. 2006), in tubulovesicular structures (Oancea

et al. 2006), and reticular formations of vascular smooth muscle cells (Yogi

et al. 2009).

3 The Channel Protein Including Structural Aspects

In analogy to other members of the TRP channel family, TRPM7 monomers are

thought to form tetrameric units, modeled after voltage-gated potassium

(K) channels (Mederos y Schnitzler et al. 2008; Jiang et al. 2003; Chubanov

et al. 2007). The 1,865 amino acids of a human TRPM7 subunit can be subdivided

into distinct domains with variable homology to TRPM7 subunits identified in other

species. Four unique melastatin amino-terminal regions are linked to the 6 putative

transmembrane spanning helices (Nadler et al. 2001), with the putative pore region

linking segments 5 and 6. The “TRP box,” unique to all identified TRP ion

channels, is a highly conserved and proline-rich 24 amino acid region C-terminal

to the transmembrane domains (Venkatachalam and Montell 2007), followed by a

cytoplasmic coiled-coil (CC) domain thought to underlie channel assembly and

trafficking (Fujiwara and Minor 2008). The CC domain is predicted to have a four-

stranded antiparallel arrangement which seems aligned with the dimer-forming

atypical α-kinase domain architecture just C-terminal of the CC (Fujiwara and

Minor 2008). The latter is indeed one of the unique features of TRPM7, which it

shares with its paralog TRPM6: the fusion of an N-terminal functional ion channel

and a C-terminally located and active serine/threonine protein kinase (Ryazanov

2002; Runnels et al. 2001; Nadler et al. 2001). Activation of caspase leads to

separation of TRPM7’s kinase domain from the channel without affecting the

functionality of the kinase but enhancing ion channel activity (Desai et al. 2012).

Both the CC and α-kinase domain are currently the only two TRPM7 regions

where X-ray crystallography has provided structural information (Yamaguchi

et al. 2001; Fujiwara and Minor 2008). The kinase domain’s 300 amino acid

residues fold into a cleft-forming structure containing the active ATP-binding

site. In addition, one zinc (Zn) and two Mg binding sites have been reported.

Sequence analysis reveals little primary amino acid sequence similarity between

catalytic domains of conventional protein kinases and TRPM7’s atypical kinase

despite an overall similarity in the folding structure (Drennan and Ryazanov 2004;

Yamaguchi et al. 2001). Analysis of truncation mutants using mouse TRPM7

identified two important regions in the kinase domain: residues 1553 to 1562 are

essential for kinase phosphorylation activity and residues 1563 to 1670 are needed

for dimer assembly (Crawley and Cote 2009).
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Mass spectrometric proteomic techniques have been used on mouse and human

TRPM7 to identify key phosphorylation sites. This resulted in the confirmation as

well as new identification of several phosphorylation sites that are all located on the

cytoplasmic C-terminus (Kim et al. 2012; Madsen et al. 2012; Matsushita

et al. 2005): 3 in the CC region, 7 in a serine-threonine-rich (Ser/Thr) domain

(Matsushita et al. 2005), and two P-sites of unknown function distal to the kinase

domain (Kim et al. 2012). Furthermore, phosphomapping by mass spectrometry

identified 47 autophosphorylation sites on TRPM7, the majority of which are

located in the Ser/Thr-rich domain N-terminal of the kinase region. This part of

the TRPM7 region is thought to control kinase substrate binding (Clark

et al. 2008c).

4 Interacting Proteins

Information on proteins interacting with TRPM7 remains scarce, even for the

kinase domain. A yeast two-hybrid screen of a rat library identified phospholipase

C (PLC) as interacting partner of the TRPM7 kinase (Runnels et al. 2001).

Subsequent work showed that receptor-stimulated activation of PLC causes inhibi-

tion of TRPM7 channel activity through localized phosphatidylinositol

4,5-bisphosphate (PIP2) hydrolysis (Runnels et al. 2002). Furthermore,

hypomagnesemic conditions increase TRPM7-kinase-regulated Ser/Thr phosphor-

ylation in the C2 domain of PLCγ2, leading to reduced Ca signaling (Deason-

Towne et al. 2012).

Involvement of TRPM7 kinase in cell motility and adhesion has been linked to

its ability to phosphorylate the assembly domains of non-muscle myosin IIA, IIB,

and IIC and ATP-dependent motor proteins involved in actomyosin-based cell

motility (Clark et al. 2006, 2008a, b). Annexin A1, a Ca-dependent membrane-

binding protein with the ability to promote membrane fusion, is also

phosphorylated by the TRPM7 kinase, providing a possible link to TRPM7’s

known involvement in cell growth and apoptosis (Dorovkov and Ryazanov 2004;

Dorovkov et al. 2011). The TRPM7 kinase also mediates enhanced Thr phosphory-

lation at residue 56 of the eukaryotic elongation factor 2 (eEF2) through eEF2

kinase (Perraud et al. 2011). This specifically occurs under reduced dietary Mg and

has been suggested to adjust protein translation rates to the availability of this

important divalent ion.

To date, TRPM6 is possibly the best understood TRPM7-interacting protein as

assessed in heterologous expression systems (Runnels 2011). Interestingly, recom-

binant and native TRPM6 seems to require TRPM7 for plasma membrane surface

expression in mouse embryonic stem (ES), DT40, HEK293 cells, and Xenopus
oocytes (Schmitz et al. 2005; Ryazanova et al. 2010; Chubanov et al. 2004, 2007),

indicating that TRPM6 is inefficient in forming functional homomeric ion channels

on its own. While this topic still remains somewhat controversial, supporting

observations show that overexpression of TRPM6 cannot rescue cell growth arrest

in chicken DT40 B cells lacking the TRPM7 protein (Schmitz et al. 2005) and, in
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contrast to TRPM7, cannot alter motility and proliferation of HEK293 (Chubanov

et al. 2004). Furthermore, a single-point mutation at amino acid residue S141 in

TRPM6 disrupts heteromeric TRPM6/TRPM7 channel formation manifesting itself

as hypomagnesemia with secondary hypocalcemia (Chubanov et al. 2004). Inter-

estingly, when cloned into the pCINeo-IRES-GFP vector, TRPM6 can be

overexpressed and forms functional homomeric channels in the plasma membrane

(Voets et al. 2004; Li et al. 2006). While this seems to be the only vector able to do

so for unknown reasons, it presents a valuable scientific tool to study the hypotheti-

cal behavior of TRPM6 if it were expressed natively. This may provide information

as to why homomeric TRPM7 channels behave differently from the heterotetramer

formed by TRPM6 and TRPM7 and as to what the underlying structural features

might be. It would also be interesting to elucidate whether the noncoding sequence

of the TRPM6-pCINeo-IRES-GFP expression construct can influence assembly

and trafficking of TRPM6.

5 A Biophysical Description of the Channel Function,
Permeation, and Gating

5.1 Channel Function

Aside from representing a fusion protein, TRPM7’s most striking feature is its

selectivity for divalent metal ions at hyperpolarized potentials (Monteilh-Zoller

et al. 2003; Nadler et al. 2001). The strong outwardly rectifying current–voltage

(I/V ) signature of TRPM7 is due to voltage-dependent permeation block by extra-

cellular divalent ions, mainly Ca and Mg (Kerschbaum et al. 2003; Nadler

et al. 2001). Removal of divalent ions allows the assessment of TRPM7 single-

channel characteristics at all physiological voltages, revealing a relatively large

conductance of 40 pS and open times of several hundred milliseconds

(Li et al. 2006). The channel itself shows no intrinsic voltage dependence, and

the level of its constitutive activity is regulated by a surprising variety of intracel-

lular and extracellular factors. Natively, most cells express only a few tens of

TRPM7 proteins in the plasma membrane, and this can readily be assessed by the

whole-cell patch-clamp method. However, the relative scarcity of endogenous

TRPM7 in the cell’s membrane hampers the use of other, less sensitive detection

methods, such as immunofluorescence or biotinylation studies, or more global

protein expression evaluations by Western blot.

5.2 Kinase Function

The identification of elongation factor-2 kinase revealed a new class of protein

kinases with no sequence homology to conventional eukaryotic protein kinases in

regard to their catalytic domains (Ryazanov et al. 1999). There are several members

of this so-called atypical or α-kinase family in mammals, and two are fused to the
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ion channels TRPM6 and TRPM7. The TRPM7 kinase specifically phosphorylates

Ser and Thr residues in a Mg-dependent manner (Ryazanova et al. 2004). It

autophosphorylates itself and phosphorylates myelin basic protein as well as his-

tone H3. At least two of the identified autophosphorylation sites (S1511 and S1567)

do not seem to influence channel behavior (Matsushita et al. 2005).

While manganese (Mn) can replace Mg to maintain kinase function, zinc

(Zn) and cobalt (Co) inhibit kinase activity, while Ca plays no role (Matsushita

et al. 2005; Ryazanova et al. 2004). Staurosporine, a common protein kinase

inhibitor preventing ATP binding, does not interfere with TPRM7 kinase function,

whereas rottlerin, a potent K+ channel activator, suppresses kinase activity at high

concentrations [IC50 ~ 40 μM (Ryazanova et al. 2004)].

5.3 Channel Permeation

The first indication that TRPM7 represents a bona fide divalent ion channel at

negative voltages and allows monovalent ion flux only at depolarized voltages was

published in one of the original reports on TRPM7 function (Nadler et al. 2001).

Detailed studies followed confirming the channel’s selectivity profile to be

Zn¼ nickel (Ni)> barium (Ba)>Co>Mg>Mn> strontium (Sr)> cadmium

(Cd)>Ca (Li et al. 2006; Monteilh-Zoller et al. 2003). Relatively large and

complex structured polyamines can additionally act as permeant blockers of

TRPM7 (Kerschbaum et al. 2003).

Several amino acid residues in the putative TRPM7 ion channel pore have been

shown to control Ca and Mg permeability. Changing glutamic acid at residue 1047

or 1052 in the mouse channel into a neutral glutamine either strongly reduces

(70 %) or even abolishes affinity to Ca or Mg, respectively (Li et al. 2007). On

the other hand, changing residue E1047 into glutamine and Y1049 into proline

results in linearized currents and loss of Ca permeation (Mederos y Schnitzler

et al. 2008). Similar observations have been made for human TRPM7 (Numata

and Okada 2008) with the corresponding key residues E1047 and E1052. In

addition, aspartic acid at 1054 and 1059 also influences permeation block by

divalent ions.

5.4 Channel Gating and Regulation

5.4.1 Magnesium
TRPM7 represents a constitutively active ion channel that is heavily regulated by a

variety of physiological feedback mechanisms. One of the most important regu-

latory factors of channel activity is intracellular free Mg (Nadler et al. 2001), which

can be mimicked by non-physiological Ba, Sr, Zn, and Mn (Kozak and Cahalan

2003). Detailed biophysical examination reveals that native TRPM7 in excised

patches has two conductance states at 39 pS and 186 pS, with both reversibly

inhibited by Mg (Chokshi et al. 2012c). The respective dose-response curves reveal
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IC50 values of 25 μM and 91 μM.Mg seems to reduce the number of active channels

rather than cause an overall reduction of single-channel conductance. Mg inhibition

involves two separate binding sites on the protein (Chokshi et al. 2012b), one within

the kinase domain and another on the channel proper (Schmitz et al. 2003). Mg

inhibitory potency measured in excised patches is about 10- to 20-fold smaller than

that seen in whole-cell patch-clamp experiments where 750 μM free Mg is needed

to suppress channel activity by 50 %, both in overexpression and native cell systems

(Nadler et al. 2001; Demeuse et al. 2006). This suggests that additional factors in

the cellular environment of TRPM7 help regulate the channel’s true physiological

Mg sensitivity. Sites coordinating the Mg ·ATP binding in the kinase domain are

partially involved in regulating the overall affinity for Mg to the channel, since

introduction of single-point mutations that abolish phosphotransferase activity

(G1799D, K1648R) reduces TRPM7’s sensitivity to intracellular Mg (Schmitz

et al. 2003). In contrast, autophosphorylation does not seem to play a role here,

since, at least for the single-point mutants investigated (S1511/S1567), no differ-

ence can be detected compared to the wild-type (wt) channel (Matsushita et al.

2005). Interestingly, intracellular Mg seems to synergize with a variety of factors

regulating TRPM7 activity, including the highly specific TRPM7 inhibitor

waixenicin A, intracellular chloride, and intracellular Mg·nucleotides (Zierler

et al. 2011; Yu et al. 2013; Demeuse et al. 2006).

5.4.2 Mg·Nucleotides
There is general consensus that mammalian TRPM7 is regulated by free intracellu-

lar Mg (Penner and Fleig 2007). Evidence for intracellular adenosine triphosphate

(ATP) as a feedback mechanism for TPRM7 was initially controversial. Runnels

et al. reported facilitation of TPM7 activity by intracellular ATP (Runnels

et al. 2001), whereas in a parallel study, Nadler et al. demonstrated an inhibitory

effect of ATP in its physiologically relevant form bound to Mg (Mg·ATP) (Nadler

et al. 2001). This issue has been resolved and the ATP-mediated activation of

TRPM7 actually is due to a decrease in free Mg caused by supplemented Na·ATP.

Subsequent analyses revealed that negative feedback inhibition by Mg·ATP

requires an intact nucleotide-binding site of the kinase domain involving amino

acid K1648 (Schmitz et al. 2003). The binding site also helps discriminate between

Mg·nucleotide (Mg·NTP) species such as Mg·GTP or Mg·TTP, since point

mutations of this residue or removal of the entire kinase domain renders the channel

insensitive to intracellular nucleotide regulation (Demeuse et al. 2006).

Mg·adenosine diphosphate (ADP), but not adenosine monophosphate (AMP), has

similar inhibitory efficacy as Mg·ATP, indicating a protection against enhanced

TRPM7 activation during variations of cell energy levels. Thus, Mg chelated to

nucleotides seems key to interfere with TRPM7 gating. Furthermore, inhibition by

Mg·nucleotides is synergistically enhanced by intracellular free Mg. In fact,

nucleotides lose any efficacy below a minimal threshold of around 200 μM free

Mg (Demeuse et al. 2006). The current model therefore postulates independent

binding sites for Mg and Mg·ATP, synergistically regulating channel activity.

Interestingly, kinase deletion at residue 1599 renders a nonfunctional channel
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(Matsushita et al. 2005), while truncating the kinase domain at aa 1569 regains

some channel function (Schmitz et al. 2003) and cutting the protein at residue 1510

fully recovers the ability to measure regular TRPM7 currents (Desai et al. 2012).

Thus, it is tempting to speculate that the protein region between aa residues 1510

and 1599 is involved in coordinating the binding of Mg to the channel.

5.5 Receptor-Coupled TRPM7 Activity

Several studies have reported regulation of TRPM7 through PLC-dependent

pathways. Co-overexpression of muscarinic receptor 1 and TRPM7 in HEK293

cells followed by charbacol stimulation leads to TRPM7 inactivation due to deple-

tion of PIP2 in the plasma membrane (Runnels et al. 2002). Endogenous TRPM7 in

CA1 hippocampal neurons is sensitive to nerve growth factor via a PLC-dependent

pathway (Tian et al. 2007), and in cardiac myocytes GTP analogues lead to TRPM7

inhibition through G-protein activity and PIP2 metabolism (Macianskiene

et al. 2008). In contrast, moderate overexpression of TRPM7 in neuroblastoma

N1E-115 cells needs free intracellular Mg to fall below physiological levels for

PLC-dependent inhibition to occur. Under normal Mg levels, TRPM7 currents are

activated rather than inhibited following receptor stimulation through bradykinin,

thrombin, or lysophosphatidic acid (Langeslag et al. 2007). Further evidence shows

involvement of endogenous Gs/Gi-coupled receptors in TRPM7 regulation. Stimu-

lation of acetylcholine receptors inhibits overexpressed TRPM7 currents in

HEK293 cells. Isoproterenol stimulation of endogenous beta-adrenergic receptors,

on the other hand, enhances TRPM7 activity and requires both a functional protein

kinase A and an intact TRPM7 kinase domain (Takezawa et al. 2004).

5.6 Mechano-sensitivity and Volume

In vascular smooth muscle A7R5 cells overexpressing TRPM7, laminar flow-

induced sheer stress causes channel translocation to the plasma membrane,

implicating TPRM7 in cellular mechanotransduction of flow (Oancea et al. 2006).

Endogenous TRPM7 in HeLa cells is directly activated by stretch or increased cell

volume and does not involve exocytotic events for biomembrane incorporation

(Numata et al. 2007). Exposing HEK293 cells expressing heterologous TPRM7 to

varying osmotic gradients provides insight into the channel’s osmo-sensitivity

mediated by molecular crowding of solutes that affect channel activity without

involvement of membrane stretch (Bessac and Fleig 2007). While results are

currently controversial as to the exact mechanism, it seems safe to say that changes

in cell volume will affect TRPM7 channel activity.
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5.7 Acidity

Acidic extracellular conditions below pH 6 greatly potentiate TRPM7 currents at

negative membrane potentials (Monteilh-Zoller et al. 2003). This is due to changes

in selectivity of TRPM7 that enhance monovalent ion permeation caused by direct

competition of protons with divalent ions for specific binding sites in the channel

pore (Jiang et al. 2005). Specifically, mutating glutamic acid residues 1047 and

1052 into nonpolar glutamine in mouse TRPM7 decreases or abolishes not only

divalent ion selectivity but also pH sensitivity (Li et al. 2007). In human TRPM7,

overlapping glutamic acid or aspartic acid residues have been identified in the pore

region with similar results [D1054, E1052, and D1059 (Numata and Okada 2008)].

The pH sensitivity of TRPM7’s selectivity profile is an interesting biophysical

feature that has to be taken into account under acidic pathological conditions.

5.8 TRPM7 Inhibitors

Several compounds have been reported to inhibit TRPM7, although most of them

lack potency or specificity or both. Extracellular spermine blocks endogenous

TRPM7-like currents in RBL-2H3 cells with an IC50 of 2.3 μM, whereas 20 μM
of SKF-96365, a nonspecific TRP channel and voltage-gated Ca channel blocker

(Singh et al. 2010), is needed for complete block (Kozak et al. 2002a).

2-Aminoethyl diphenylborinate (2-APB), a compound found to interfere with a

variety of proteins involved in Ca signaling, inhibits overexpressed human TRPM7

currents with an IC50 of 174 μM (Li et al. 2006). Endogenous TRPM7-like currents

can be reversibly inhibited at 50 μM 2-APB in Jurkat T lymphocytes (Prakriya and

Lewis 2002). Interestingly, while 2-APB inhibits TRPM7, it activates its paralog

TRPM6, making this compound a useful tool in discriminating between currents

carried by these two proteins (Li et al. 2006). Furthermore, it is now known that

2-APB does not bind directly to TRPM7, but rather inhibits channel activity

through an intracellular acidification mechanism (Chokshi et al. 2012a).

The first high-throughput drug-screening bioassay targeting TRPM7 was devel-

oped in 2010 using fluorescent-based Mn quench in HEK293 cells overexpressing

human TRPM7 (Castillo et al. 2010). This led to the discovery of the first specific

and highly potent TRPM7 inhibitor waixenicin A, a compound isolated from the

soft coral Sarcothelia edmondsoni (Zierler et al. 2011). Waixenicin A blocks

TRPM7 currents in a Mg-dependent manner with an IC50 of 16 nM, and TRPM7-

dependent cell proliferation is inhibited with an IC50 of 3.2 μM in RBL-1 cells.

Waixenicin A has no effects on other major pathways that regulate Ca influx such as

TRPM2, TRPM4, and Ca release-activated Ca (CRAC) channels (Zierler

et al. 2011), and the compound also does not inhibit TRPA1 at 10 μM
concentrations (Zierler and Fleig unpublished data). Importantly, waixenicin A

does not affect TRPM7’s sister channel TRPM6, adding another pharmacological

tool for differentiating between TRPM6 and TRPM7 (Zierler et al. 2011).
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Using an aequorin bioluminescence-based assay, several small conductance

Ca-activated K channel inhibitors were found to act on TRPM7 (Chubanov

et al. 2012), including the antimalarial plant alkaloid quinine, CyPPA, dequalinium,

NS8593, SKA31, and UCL1684. Of those, the most potent compound was NS8593

with an IC50 of 1.6 μM. NS8593 is thought to be a direct channel blocker and seems

to interfere with the Mg-dependent regulation of TRPM7 while also inhibiting the

mobility of HEK293 (Chubanov et al. 2012). The broad-spectrum serine protease

inhibitor and anticoagulant nafamostat mesylate interfere with heterologous mam-

malian TRPM7 with an IC50 of 27 μM (Chen et al. 2010a), and several

5-lipoxygenase inhibitors (NDGA, AA861, and MK886) inhibit TRPM7 in the

higher μM range (Chen et al. 2010a). Sphingosine, the primary component of

sphingolipids in the plasma membrane, and fingolimod, a structural analogue of

sphingosine and FDA-approved for treatment of multiple sclerosis, are inhibitors of

TRPM7 with IC50s of 600 nM and 720 nM, respectively (Qin et al. 2013). They act

by reducing the open probability of the channel. Metabolites of sphingosine, such as

sphingosine-1-phosphate or ceramides, have no effect. These properties are remi-

niscent of the sphingolipid effects reported for CRAC channels (Mathes

et al. 1998). One known side effect of calcineurin inhibitors is hypomagnesemia.

Cyclosporin A and FK506 (tacrolimus), important calcineurin inhibitors, affect Mg

flux as assessed by MagFura measurements in the intestinal epithelial cell line

CaCo (Gouadon et al. 2012). While cyclosporin A counteracts Mg accumulation,

FK506 increases Mg influx without altering expression levels of TRPM6, TRPM7,

or MagT1.

In conclusion, several compounds interfere with TRPM7 at various potencies or

selectivity. Both 2-APB and waixenicin A could be useful tools to pharmaco-

logically differentiate between TRPM6 and TRPM7.

6 Physiological Functions in Native Cells, Organs, and Organ
systems

Early evidence pointed to TRPM7’s possible involvement in cellular Ca and Mg

homeostasis as well as cell viability and proliferation (Penner and Fleig 2007).

Further studies identified central roles in cell migration, exocytosis, and develop-

ment (Runnels 2011), and disruption of normal TRPM7 function has been

associated with the progression of cancer, severity of brain ischemia, and cardio-

vascular disease.

6.1 Magnesium Homeostasis

The channel’s involvement in cellular Mg homeostasis was shown through genetic

knockout experiments in chicken B lymphocytes, leading to an arrest in cell

proliferation and reduced intracellular Mg levels that could be rescued exclusively

by high extracellular Mg supplementation (Schmitz et al. 2003). Interfering with
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TRPM7 channel function by a genetic knockout of the kinase domain arrests mouse

embryonic stem cell proliferation that again can be rescued by high external Mg

(Ryazanova et al. 2010). Such rescue of TRPM7-deficient cells is now known to be

mediated by endogenous expression of alternate Mg transporters such as SLC41A1

(Kolisek et al. 2008), SLC41A2 (Sahni et al. 2007), or MagT1 (Deason-Towne

et al. 2011), depending on cell type.

TRPM7 is not only important for cellular Mg homeostasis but is also involved in

maintaining systemic Mg levels (Ryazanova et al. 2010). Mice heterozygotic for a

TRPM7 kinase domain deletion develop hypomagnesemia compared to control

mice. This seems to be caused by a deficit in Mg absorption through the colon rather

than reabsorption mechanisms through the kidney. On the other hand, tissue-

specific deletion of TRPM7 in T lymphocytes of mice does not alter total Mg

contents of these cells (Jin et al. 2008). This is not surprising, since selective tissue-

specific deletion of TRPM7 is not expected to alter overall systemic Mg homeosta-

sis, and T cells express compensating Mg transporters such as MagT1

(Li et al. 2011).

Amidst discussions of the importance of TRPM7 in cellular and systemic Mg

homeostasis, it should be remembered that the channel represents a divalent ion

influx mechanism for other divalent ion species, including Ca and trace metals

(Monteilh-Zoller et al. 2003). Interestingly, TRPM7’s ability to conduct Ca is

currently linked to a disease-inducing role such as in neuronal ischemia or atrial

fibrillation (Du et al. 2010; Aarts et al. 2003). The physiological role of Ca

conductance by TRPM7 remains largely unexplored. Indeed, even TRPM7’s role

in cell migration seems to be linked to its ability to conduct Mg rather than Ca

(Su et al. 2011), despite a close correlation between TRPM7 plasma membrane

localization and cellular Ca hot spot microdomains thought to drive cell migration

(Wei et al. 2009; Clark et al. 2006). Finally, recent work implicates TRPM7-

mediated Cd uptake in osteoblast cytotoxicity (Martineau et al. 2010; Levesque

et al. 2008), further emphasizing TRPM7’s physiological role as a divalent ion

channel mechanism.

6.2 Cell Proliferation, Cell Death, and Cell Differentiation

Genetic or pharmacological ablation of TRPM7 in proliferating tissue arrests cells

at G0/G1 transition of the cell cycle (Zierler et al. 2011; Tani et al. 2007; Schmitz

et al. 2003; Nadler et al. 2001; Abed and Moreau 2007; Sahni et al. 2010). When

arresting RBL-2H3 cells at various stages of the cell cycle, endogenous TRPM7-

like currents are significantly upregulated at the G0/G1 transition (Tani et al. 2007),

further emphasizing the critical role of this channel at the transition stage from

quiescence to proliferation. Differentiated mast cells, on the other hand, undergo

apoptosis upon genetic suppression of TRPM7 (Ng et al. 2012), and similar

observations are made in hepatic stellate cells, possibly involving the

TNF-related apoptosis-inducing ligand (TRAIL) mechanism (Liu et al. 2012).

Interestingly, proliferating rat embryonic hepatocytes and rat hepatoma show
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higher TRPM7 expression levels than adult nondividing rat hepatocytes, indicating

that downregulation of endogenous TRPM7 is linked to the differentiation process

(Lam et al. 2012). Thus, it appears that TRPM7 is critical for the physiology of

proliferating cells to maintain cell numbers, whereas differentiated cells reduce the

expression of TRPM7 to levels that sustain supplementation of cells with Ca, Mg,

and trace metals.

6.3 Migration

Early observations link TRPM7 activity to maintenance of cell structure, as TRPM7

overexpression in HEK293 cells leads to rounding and detachment of cells from the

substrate, which requires functional m-calpain activity and depends on Ca influx

through the TRPM7 channel domain (Nadler et al. 2001; Su et al. 2006). Activation

of m-calpain by TRPM7 is thought to work through stress-dependent stimulation of

p38 MAP kinase and JUN kinase, as inhibitors of these proteins inhibit the cell

rounding and detachment caused by overexpressing TRPM7 (Su et al. 2010).

TRPM7 seems to be partially responsible for supporting activated T cell migration

as well as the velocity of migration (Kuras et al. 2012), and genetic suppression of

TRPM7 in migrating WI-38 fibroblasts leads to a reduced number of Ca flickers

accompanied by a disruption of normal cell migratory patterns (Wei et al. 2009).

Interestingly, both intracellular Mg and Ca can influence m-calpain activity

(Su et al. 2010), and indeed Rac- and Cdc42-dependent polarized cell movement

of fibroblasts relies on the availability of intracellular Mg and not Ca

(Su et al. 2011). Further studies identify TRPM7 as controlling actomyosin con-

tractility and cell adhesion by increasing cellular Ca levels, and this involves a

phosphorylation step utilizing the channel’s kinase (Clark et al. 2006). Thus, it

seems that divalent ion influx through TRPM7 is involved in cell adhesion and

migration, whereas the protein’s kinase domain supports actomyosin contractility.

7 Lessons from Knockouts

The role of TRPM7 in living organisms has been investigated in several genetically

tractable animal models such as mouse (M. musculus), zebrafish (D. rerio), and frog
(Xenopus laevis). The roles of TRPM7-related proteins have also been explored in

invertebrate species such as fruit fly (Drosophila melanogaster) and roundworm

(Caenorhabditis elegans).

7.1 Mouse Trpm7

Two Trpm7 null mutant mice [Trpm7βgeo and Trpm7Δ17 (Table 1)] and mouse

mutants lacking exons encoding the kinase domain [Trpm7Δkinase/Δkinase (Table 1)]
die at embryonic day 6.5–7.5 (e6.5–e7.5) and e7.5, respectively (Ryazanova
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et al. 2010; Jin et al. 2008). The reasons for this remain unclear. As briefly discussed

above, mice heterozygotic for the TRPM7 kinase ablation (Trpm7Δkinase/+) have
reduced Mg levels in the blood, bone, and urine (Ryazanova et al. 2010). In contrast

to wild-type control mice, a substantial fraction of heterozygotic animals die shortly

after placing them on a Mg-deficient diet. In addition, Trpm7Δkinase/+ mice exhibit

behavioral alterations indicative of Mg deficiency (clasping, tremors, and seizures).

Embryonic stem (ES) cells isolated from these animals show reduced TRPM7

currents due to an increased sensitivity to intracellular Mg. Thus, experiments

with Trpm7Δkinase/+ mice indicate that a key aspect of TRPM7 function is a

regulation of systemic Mg homeostasis.

Conditional mutagenesis of the Trpm7fl allele (Table 1) using Cre/loxP-

recombination technologies has been employed to elucidate a spatiotemporal

requirement for Trpm7 during embryonic development. Here, an epiblast-restricted

inactivation of Trpm7 leads to lethality indicating that TRPM7 is required within

the embryo proper (Jin et al. 2008). Furthermore, global disruption of Trpm7 at

different embryonic stages using a tamoxifen (TM)-inducible Cre-ER transgene

uncovers embryonic lethality during e7–e9. In contrast, TM-induced mutagenesis

of Trpm7 at e14.5 is compatible with prenatal development since healthy Trpm7
null pups are born with expected Mendelian inheritance. Surprisingly, the

TM-induced inactivation of Trpm7 in adults causes no obvious phenotype,

suggesting that Trpm7 is indispensible only before and during organogenesis (Jin

et al. 2008). However, one caveat to keep in mind is the difficulty to accurately

assess whether the incomplete deletion of Trpm7 observed in the tissue of this

mouse model is sufficient to induce a true Trpm7 null phenotype.

Several Cre transgenic lines with tissue-specific recombination activity were

used to elucidate the organ-restricted requirements of Trpm7. First, deletion of

Trpm7 in the T cell lineage disrupts thymopoiesis and leads to a developmental

block of thymocytes and a progressive depletion of thymic medullary cells (Jin

et al. 2008). Second, disruption of Trpm7 in the embryonic ureteric bud causes

ablation of the protein in collecting ducts of the postnatal kidney without obvious

morphological alterations (Jin et al. 2012). In contrast, deletion of Trpm7 in the

embryonic metanephric mesenchyme leads to inactivation of the gene in renal

Table 1 Mouse lines carrying mutant alleles in Trpm7 gene

Allele Targeting strategy Functional outcome References

Trpm7βgeo Insertion of β-geo reporter

sequence in the first intron

of Trpm7

Constitutive loss of function and

expression of β-galactosidase driven
by Trpm7 promoter

Jin

et al. (2008)

Trpm7fl LoxP sites flanking exon 17 Cre-mediated loss of function due to a

frame shift

Jin

et al. (2008,

2012)

Trpm7Δ17 Deletion of exon 17 in

Trpm7fl
Constitutive loss-of-function due to a

frame shift

Jin

et al. (2008)

Trpm7Δkinase Deletion of exons 32–36 Constitutive deletion of the kinase

domain

Ryazanova

et al. (2010)
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tubules of the kidney. The latter mutants show a reduction in glomeruli number,

renal tubular dilation, and formation of cysts in the proximal tubules, indicating that

Trpm7 is essential for nephrogenesis. Third, disruption of Trpm7 in neural crest

(NC) cells at e10.5 results in loss of dorsal root ganglion sensory neurons and skin

pigment cells (Jin et al. 2012). However, disruption of Trpm7 in the embryonic

neural stem (NS) cells at e10.5 does not influence normal brain development.

Studies with NS cells in vitro reveal that Trpm7 is not essential for their self-

renewal and differentiation. In contrast, during in vitro differentiation of induced

pluripotent stem cells to NS cells, Trpm7 disruption prevents the formation of the

NS cell monolayer. Thus, Trpm7 seems essential for NC progenitors but dispens-

able once the progenitors are committed.

The role of Trpm7 in cardiogenesis has been studied by heart-restricted muta-

genesis of the conditional Trpm7 allele (Sah et al. 2013). Cardiac deletion of Trpm7
at e9.0 results in congestive heart failure and death. In contrast, inactivation of

Trpm7 at e13.0 produces viable mice with normal ventricular function. Deletion of

Trpm7 at an intermediate time point reduces viability of the mutants to 50 %. The

surviving mutant mice develop cardiomyopathy associated with heart block,

impaired repolarization, and ventricular arrhythmias.

7.2 Zebrafish and Frog

Several loss-of-function mutations in zebrafish Trpm7 (zTrpm7) have been

described. zTrpm7-deficient animals undergo normal early morphogenesis. How-

ever, mutant larvae exhibit multiple defects including loss of touch responsiveness,

defective melanin synthesis and apoptotic death of melanophores, defective prolif-

eration of epithelial cells in the exocrine pancreas, and lethality in late larval life

(Yee et al. 2011; McNeill et al. 2007; Low et al. 2011; Elizondo et al. 2005, 2010).

zTrpm7 mutant larvae have reduced total levels of Mg and Ca, and addition of

supplemental Mg, but not Ca, partially rescues melanophore survival and prolifer-

ation of cells in the exocrine pancreas (Yee et al. 2011; Elizondo et al. 2010).

zTrpm7 mutants develop kidney stones and express higher levels of stanniocalcin

1 (stc1) and anti-hyperphosphatemic factor, fibroblast growth factor 23 (fgf23)

(Elizondo et al. 2010). Stc1 modulates total Mg and Ca levels both in mutant and

wild-type larvae. The levels of Mg and Ca can be normalized in zTrpm7mutants by

a block of stc1 activity, whereas the formation of kidney stones can be prevented by

knockdown of fgf23.

A role of TRPM7 in early embryonic development has also been studied by

genetic manipulation of X. laevis embryos. Knockdown of Xenopus Trpm7
(xTrpm7) transcripts using morpholino oligonucleotides reveals that xTrpm7 in

conjunction with noncanonical Wnt signaling regulates cell polarity and migration

during gastrulation (Liu et al. 2011). The gastrulation defect can be rescued by

exogenous Mg and by overexpression of the Mg transporter SLC41A2 or a domi-

nant negative form of Rac. This suggests that TRPM7-mediated entry of Mg plays

an important role in vertebrate gastrulation.
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7.3 Fruit Fly and Roundworm

D. melanogaster harbors a single Trpm gene (dTrpm) encoding a channel subunit

that lacks a kinase domain. dTrpm is highly expressed in the Malpighian tubules

(equivalent of mammalian kidneys). dTrpm null mutants develop slowly as larvae

and arrest as prepupae with morphological defects in the Malpighian tubules

(Hofmann et al. 2010). dTrpm-deficient larvae show increased Mg levels in the

body when raised on Mg-enriched diets indicating that dTrpm regulates removal of

Mg from the hemolymph by the Malpighian tubules. dTrpm may also regulate Zn

homeostasis. It was reported that dTrpm-deficient larvae exhibit low Zn levels, and

this phenotype can be rescued by Zn supplementation (Georgiev et al. 2010).

C. elegans has three TRPM channels genetically related to TRPM7: GON-2,

GTL-1, and GTL-2. Like dTRPM, these channels do not contain enzyme domains.

GON-2 and GTL-1 are expressed in the intestine and regulate Mg uptake, while

GTL-2 controls Mg excretion by the excretory cells (Teramoto et al. 2005, 2010).

Moreover, gon-2/gtl-1 double mutants show reduced body Mg levels and a growth

defect, which can be rescued by dietary Mg, but not Ca (Teramoto et al. 2010).

In summary, the experiments with genetically tractable animal models support

the idea that TRPM7 and its genetic relatives are essential for early development,

organogenesis, and regulation of Mg homeostasis.

8 Role in Hereditary and Acquired Diseases

TRPM7 is not the only ion channel whose activity is controlled by the availability

of intracellular Mg · ATP. Early studies identified ATP-sensitive voltage-dependent

chloride (Cl-) channels in the sarcoplasmic reticulum of rabbit skeletal muscle

(Kourie 1997) and in the plasma membrane of various tissue, including mouse

cortical collecting ducts (Meyer and Korbmacher 1996) and human T cells

(Cahalan and Lewis 1988). CFTR ion channel gating is regulated by ATP binding

and hydrolysis in synergy with intracellular Mg (Ikuma and Welsh 2000), and

activity of the ATP-sensitive K+ channels in pancreatic β-cells is determined by the

intracellular concentration ratio of Mg ·ATP over Mg ·ADP (Tarasov et al. 2004).

As such, these ion channels function as sensors of cell metabolism, and any changes

in availability of either glucose or oxygen will affect their channel activity with

varying impact on cell (patho)physiology. For TRPM7 this was most dramatically

demonstrated in a mouse model of transient global ischemia, where small

interfering RNA-induced suppression of TRPM7 in the right hippocampus

protected neurons from undergoing cell death compared to control (Sun

et al. 2009). Ample in vitro studies corroborate the involvement of TRPM7 in

oxygen-glucose deprivation-induced neuronal cell death (Aarts et al. 2003; Zhang

et al. 2011), either caused by activation of channels by reactive oxygen species

(Aarts et al. 2003; Coombes et al. 2011), by changes in extracellular divalent ions

(Wei et al. 2007), or by TRPM7-mediated Zn2+ accumulation (Inoue et al. 2010).

Epidemiologic studies inspired by these findings have performed comparative gene
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expression analyses in mice to link TRPM7 to brain-related diseases such as

multiple sclerosis, Alzheimer’s disease, and stroke and found TRPM7 to be one

of 18 common genes to be regulated in these mouse disease models (Tseveleki

et al. 2010). However, a prospective, nested case-control study did not find a

connection between incident risk of ischemic stroke and variations in the TRPM7

gene (Romero et al. 2009).

The TPRM7 channel kinase seems to play a role in various cardiovascular

diseases. Early reports located TRPM7-like currents in pig, rat, and guinea pig

ventricular myocytes (Gwanyanya et al. 2004) and most recently in human atrial

myocytes (Macianskiene et al. 2012; Zhang et al. 2012a), although the channel

kinase’s role in this tissue remains to be determined. More is known about

TRPM7’s function in human cardiofibroblasts, where increased TRPM7-mediated

Ca influx has been linked to increased myofibroblast differentiation and

fibrogenesis in patients prone to atrial fibrillation (Du et al. 2010).

TRPM7 is also linked to hypertension. Vascular smooth muscle cells (VSMC)

from spontaneously hypertensive rats have lower TRPM7 mRNA levels and signif-

icantly reduced intracellular Mg levels compared to VSMC from Wistar control,

and this is linked to angiotensin II stimulation (Touyz et al. 2006). Interestingly,

chronic angiotensin II application increases intracellular Mg in a TRPM7-

dependent way leading to enhanced DNA and protein production, indicating cell

growth (He et al. 2005). VSMC isolated from the ascending aorta of mouse respond

to angiotensin II stimulation by upregulating TRPM7 expression, which triggers a

Ca-dependent switch from contractile cell characteristics to a phenotype supporting

cell proliferation (Zhang et al. 2012b). In human aortic VSMC, vascular calcifica-

tion can be prevented on the cellular level by exposing cells to increasing external

Mg concentrations, and the use of pharmacological tools implicates TRPM7 to be

involved in this process (Louvet et al. 2013). Renal TRPM7 (and TRPM6) is

downregulated in a mouse model of hereditary hypomagnesemiar (Yogi

et al. 2011), which is further exacerbated by aldosterone administration to induce

hypertension (Sontia et al. 2008). Mg supplementation can alleviate the effects

induced by aldosterone, including hypertension, inflammation, and fibrosis.

The central function of TRPM7 in processes driving cell growth, proliferation,

differentiation, and migration identifies the protein as a possible target in cancer

(Sahni et al. 2010). Indeed, reducing TRPM7 expression inhibits proliferation in

human head and neck carcinoma (Jiang et al. 2007) and human gastric adenocarci-

noma cells (Kim et al. 2008). In other cancer cell lines, this experimental manipu-

lation affects cell migration and invasiveness, such as in A549 lung cancer (Gao

et al. 2011), human nasopharyngeal carcinoma (Chen et al. 2010b), BXPC-3 human

pancreas adenocarcinoma (Rybarczyk et al. 2012), or MDA-MB-435 breast cancer

cells (Meng et al. 2013). When comparing tumor tissue with normal tissue, TRPM7

is generally upregulated as assessed in human pancreatic adenocarcinoma

(Rybarczyk et al. 2012; Yee et al. 2011), human breast cancer (Middelbeek

et al. 2012), and rat hepatoma (Lam et al. 2012). This has led to the identification

of TRPM7 as an independent predictor of poor outcome in breast cancer patients

due to increased metastasis formation (Meng et al. 2013; Middelbeek et al. 2012).
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Patient survival is inversely related to TRPM7 expression levels in human pancre-

atic ductal adenocarcinoma, where TRPM7 levels increase at higher tumor staging

(Rybarczyk et al. 2012).

Based on TRPM7’s unique permeation profile for both Ca and Mg, epidemio-

logic studies have started to look at the ratio of Ca:Mg intake and cancer risk. The

T1482I polymorphism in the TRPM7 gene, thought to contribute to familial

amyotrophic lateral sclerosis and Parkinsonism dementia in Guam (Hermosura

et al. 2005) but not in Kii, Japan (Hara et al. 2010), is associated with elevated

risk of adenomatous and hyperplastic polyps, both risk indicators of colorectal

adenoma. This association is particularly strong when the Ca:Mg intake ratio is

high (Dai et al. 2007) and gave reason to initiate a randomized placebo-controlled

intervention clinical trial investigating whether a reduction of dietary Ca:Mg ratio

lowers the risk of adenoma and hyperplastic polyps in patients who do or do not

carry the T1482I allele (clinicaltrials.gov: NCT01105169). A retrospective analysis

in age-matched prostate cancer patients shows a parallel increase in the serum Ca:

Mg ratio and TRPM7 expression levels (Sun et al. 2013). For postmenopausal

breast cancer, the medical hypothesis was brought forth that a higher ratio of Ca:Mg

serum levels might parallel increased risk (Sahmoun and Singh 2010). Thus,

TRPM7 as a Ca- and Mg-conducting ion channel may represent a novel target to

be considered in cancer prevention and control.
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