Ca²⁺ channels in cancer

Calcium (Ca²⁺) is a versatile second messenger which is involved in virtually all cellular processes [1,2]. Changes in cytosolic free Ca²⁺ concentration ([Ca²⁺]_{c}^{free}) within specific cellular microdomains trigger signaling pathways that control a plethora of diverse cellular functions, including egg fertilization, muscle contraction, exocrine secretion, immune competence, learning and memory and programmed cell death. [Ca²⁺]_{c}^{free} is finely tuned by the activity of plasma membrane and organelar channels and transporters and by Ca²⁺ buffering proteins within the cell. The major regulators of cellular Ca²⁺ signaling are Ca²⁺-conducting channels adorning the surface of the plasma membrane or membranes of intracellular organelles. These channels can allow Ca²⁺ influx into the cell from the extracellular space or Ca²⁺ release from internal organelles into the cytosol and as such can exquisitely regulate Ca²⁺ signaling in response to external stimuli. Altered Ca²⁺ signaling is a hallmark of numerous diseases including several types of cancer [3]. This special issue contains a collection of reviews focused on the emerging role of Ca²⁺ signaling in several malignancies. Lange et al. present a concise overview of Ca²⁺ signaling components that are deregulated in neuroblastoma that might provide promising targets for future therapies [4]. Ca²⁺ influx across the plasma membrane is mainly mediated by the ubiquitous store-operated Ca²⁺ entry (SOCE) pathway encoded by ORAI Ca²⁺ channels. ORAI channels are activated by depletion of inositol-1,4,5-trisphosphate (IP₃)-sensitive intracellular Ca²⁺ stores. Other store-independent Ca²⁺ channels are activated by depletion of inositol-1,4,5-trisphosphate (IP₃)-sensitive intracellular Ca²⁺ stores. Other store-independent Ca²⁺ entry (SICE) pathways have been reported in different cell types [5,6], including cancer cells and are encoded by different isoforms of ORAI or Transient Receptor Potential (TRP) channels. Cantonero et al. present an overview for SICE in cancer [7] while the review by Pierro et al. focuses on SOCE [8]. In particular, the importance of SOCE in colon cancer is extensively described by Villalobos et al. [9]. In another digestive cancer, the hepatocellular carcinoma, Ali et al. explain how lipids alter Ca²⁺ signaling to promote disease progression [10]. TRP channels are often upregulated in cancers, and the review by Sterea et al. summarizes how TRP channels regulate cancer cell fates specifically in gastric cancer [11]. TRP channels constitute a large family of Ca²⁺ channels that act as sensors for changes in the cell environment. TRP melastatin 2 (TRPM2) channels are particularly essential for cancer cell survival and protection against stress as described in the review of Miller [12]. Recently, the importance of cancer stem cells (CSCs) is an emerging area of experimental oncology. CSCs ability to self-renew and proliferate from a quiescent state is suspected to be responsible for resistance to standard chemotherapy and for tumor recurrence. The role of Ca²⁺ signaling in CSCs is nicely detailed by two highly complementary reviews from O’Reilly and Buchanan [13] and from Terrié et al. [14]. While this special issue focuses on the impact of remodeling Ca²⁺ channel expression and activity on cancer cell growth and progression, other equally important ion channels specific for conducting Cl⁻, K⁺, Mg²⁺ and others are also remodeled during cancer and can directly or indirectly alter cellular Ca²⁺ homeostasis through a variety of mechanisms. Some of these mechanisms are presented in an independent special issue entitled “Ion channels and Ca²⁺ homeostasis in cancer”.

Acknowledgements

This work was supported by la Ligue Contre le Cancer, University of Tours, INSERM, Tours Hospital, Region Centre Val de Loire, Cancéropôle Grand Ouest, the association “CANCEN” and Tours’ Hospital oncology association ACORT” and l'Université de Picardie Jules Verne.

References


Mathieu Gauyart
Laboratoire de Physiologie Cellulaire et Moléculaire – EA4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), F-80039, Amiens, France

https://doi.org/10.1016/j.ceca.2019.102083

Available online 26 September 2019
0143-4160/ © 2019 Elsevier Ltd. All rights reserved.
Mohamed Trebak⁎⁎
Department of Cellular and Molecular Physiology and Penn State Cancer Institute (Mechanisms of Carcinogenesis), Penn State University College of Medicine, H166, 500 University Drive, Hershey, PA, 17033, USA
E-mail address: mtrebak@psu.edu.

Andrea Fleig⁎
⁎⁎ Center for Biomedical Research at The Queen’s Medical Center, Honolulu, HI 96813, USA

Christophe Vandier
Nutrition-Growth and Cancer-INSERM UMR 1069, Université de Tours, F-37000, Tours, France

Halima Ouadid-Ahidouch
Laboratoire de Physiologie Cellulaire et Moléculaire – EA4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), F-80039, Amiens, France

⁎ Corresponding author.
⁎⁎ Corresponding author.