QCBR
The Queen's Medical Center
  • QCBR
  • LCMS
  • HTS
  • News
  • Publications
  • Make a Gift
  • Gallery

QCBR Publications

Picture
​​Inhibition of TRPM7 with waixenicin A reduces glioblastoma cellular functions
Wong R, Gong H, Alanazi R, Bondoc A, Luck A, Sabha N, Horgen FD, Fleig A, Rutka JT, Feng ZP, Sun HS.
Cell Calcium 92:102307 (2020).
​DOI: https://doi.org/10.1016/j.ceca.2020.102307  PMID: ​https://www.ncbi.nlm.nih.gov/pubmed/33080445

Picture
​​Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead
Sun, H.S., Horgen, F.D., Romo, D., Hull, K.G., Kiledal, S.A., Fleig, A. & Feng, Z.P.
Acta Pharmacologica Sinica DOI:10.1038/s41401-020-00512-4 (2020).
​DOI: https://doi.org/10.1038/s41401-020-00512-4 PMID: ​https://www.ncbi.nlm.nih.gov/pubmed/32994545

Picture
​​TRPM7 mediates neuronal cell death upstream of calcium/calmodulin-dependent protein kinase II and calcineurin mechanism in neonatal hypoxic-ischemic brain injury
Turlova, E., Wong, R., Xu, B., Li, F., Du, L., Habbous, S., Horgen, F.D., Fleig, A. Feng, Z.P. & Sun, H.S.
Translational Stroke Research DOI: 10.1007/s12975-020-00810-3 (2020).
                ​DOI: https://doi.org/10.1007/s12975-020-00810-3 PMID: ​https://www.ncbi.nlm.nih.gov/pubmed/32430797

Picture
​​Divalent cation influx and calcium homeostasis in germinal vesicle mouse oocytes
Ardestan, G., Mehregan, A., Fleig, A., Horgen, F. D., Carvacho, I., & Fissore, R. A.
Cell Calcium 87, 102181 (2020).
​DOI: https://doi.org/10.1016/j.ceca.2020.102181 PMID: ​https://www.ncbi.nlm.nih.gov/pubmed/32097818

Picture
TRPM7 contributes to progressive nephropathy
Suzuki, S., Penner, R., & Fleig, A. 
Scientific Reports 10, 2333 (2020).
​DOI: https://doi.org/10.1038/s41598-020-59355-y  PMID: ​https://www.ncbi.nlm.nih.gov/pubmed/32047249

Picture
​​The role of TRPC1 in modulating cancer progression
Elzamzamy, O. M., Penner, R., & Hazlehurst, L. A. 
Cells 9, 388 (2020).
​DOI: https://doi.org/10.3390/cells9020388 PMID: https://www.ncbi.nlm.nih.gov/pubmed/32046188

Picture
​​Ca2+ homeostasis and Cancer
Gautier, M., Trebak, M., Fleig, A., Vandier, C., & Ouadid-Ahidouch, H. 
Cell Calcium 84, 102084 (2019).
​DOI: https://doi.org/10.1016/j.ceca.2019.102084 PMID: https://www.ncbi.nlm.nih.gov/pubmed/31593838

Picture
​​Ca2+ channels in Cancer
Gautier, M., Trebak, M., Fleig, A., Vandier, C., & Ouadid-Ahidouch, H. 
Cell Calcium 84, 102083 (2019).
​DOI: https://doi.org/10.1016/j.ceca.2019.102083 PMID: https://www.ncbi.nlm.nih.gov/pubmed/31606459

Picture
Pharmacology of JNJ-28583113: A novel TRPM2 antagonist
Fourgeaud, L., Dvorak, C., Faouzi, M., Starkus, J., Sahdeo, S., Wang, Q., Lord, B., Coate, H., Taylor, N., He, Y., Qin, N., Wickenden, A., Carruthers, N., Lovenberg, T. W., Penner, R., & Bhattacharya, A. 
European Journal of Pharmacology 853, 299–307 (2019).
​DOI: https://doi.org/10.1016/j.ejphar.2019.03.043. PMID: https://www.ncbi.nlm.nih.gov/pubmed/30965058

Picture
Areca nut extracts mobilize calcium and release pro-inflammatory cytokines from various immune cells
Faouzi, M., Neupane, R. P., Yang, J., Williams, P., & Penner, R.
Scientific Reports 8(1), 1075 (2018).
DOI: https://doi.org/10.1038/s41598-017-18996-2. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773534

Picture
TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis
Huang, Y., Leng, T.-D., Inoue, K., Yang, T., Liu, M., Horgen, F. D., Fleig, A., Li, J., & Xiong, Z.-G.
The Journal of Biological Chemistry 293(37), 14393–14406 (2018).
DOI: https://doi.org/10.1074/jbc.RA117.001032. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139551

Picture
The TRPM7 kinase limits receptor-induced calcium release by regulating heterotrimeric G-proteins
Suzuki, S., Lis, A., Schmitz, C., Penner, R., & Fleig, A.
Cellular and Molecular Life Sciences: CMLS 75(16), 3069–3078 (2018).
DOI: https://doi.org/10.1007/s00018-018-2786-z. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033657

Picture
The TRPM7 channel kinase regulates store-operated calcium entry
Faouzi, M., Kilch, T., Horgen, F. D., Fleig, A., & Penner, R.
The Journal of Physiology 595(10), 3165–3180 (2017).
DOI: https://doi.org/10.1113/JP274006. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430208

Picture
New insights into Ca2+ channel function in health and disease
Fleig, A., & Parekh, A. B.
The Journal of Physiology 595(10), 2997–2998 (2017).
DOI: https://doi.org/10.1113/JP274289. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430230

Picture
Inhibition of TRPM7 suppresses cell proliferation of colon adenocarcinoma in vitro and induces hypomagnesemia in vivo without affecting azoxymethane-induced early colon cancer in mice
Huang, J., Furuya, H., Faouzi, M., Zhang, Z., Monteilh-Zoller, M., Kawabata, K. G., Horgen, F. D., Kawamori, T., Penner, R., & Fleig, A.
Cell Communication and Signaling: CCS 15(1), 30 (2017).
DOI: https://doi.org/10.1186/s12964-017-0187-9. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558780

Picture
Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion
Sisquella, X., Nebl, T., Thompson, J. K., Whitehead, L., Malpede, B. M., Salinas, N. D., Rogers, K., Tolia, N. H., Fleig, A., O’Neill, J., Tham, W.-H., David Horgen, F., & Cowman, A. F.
ELife 6 (2017).
DOI: https://doi.org/10.7554/eLife.21083. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333951

Picture
Scalaradial Is a potent inhibitor of Transient Receptor Potential Melastatin 2 (TRPM2) ion channels
Starkus, J. G., Poerzgen, P., Layugan, K., Kawabata, K. G., Goto, J.-I., Suzuki, S., Myers, G., Kelly, M., Penner, R., Fleig, A., & Horgen, F. D.
Journal of Natural Products 80(10), 2741–2750 (2017).
DOI: https://doi.org/10.1021/acs.jnatprod.7b00515. PMID: https://www.ncbi.nlm.nih.gov/pubmed/29019677

Picture
The coiled-coil domain of zebrafish TRPM7 regulates Mg·nucleotide sensitivity
Jansen, C., Sahni, J., Suzuki, S., Horgen, F. D., Penner, R., & Fleig, A.
Scientific Reports 6, 33459 (2016).
DOI: https://doi.org/10.1038/srep33459. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024298

Picture
Human CNNM2 is not a Mg2+ transporter per se
Sponder, G., Mastrototaro, L., Kurth, K., Merolle, L., Zhang, Z., Abdulhanan, N., Smorodchenko, A., Wolf, K., Fleig, A., Penner, R., Iotti, S., Aschenbach, J. R., Vormann, J., & Kolisek, M.
Pflugers Archiv: European Journal of Physiology 468(7), 1223–1240 (2016).
DOI: https://doi.org/10.1007/s00424-016-1816-7. PMID: https://www.ncbi.nlm.nih.gov/pubmed/27068403

Picture
TRPM7 regulates axonal outgrowth and maturation of primary hippocampal neurons
Turlova, E., Bae, C. Y. J., Deurloo, M., Chen, W., Barszczyk, A., Horgen, F. D., Fleig, A., Feng, Z.-P., & Sun, H.-S.
Molecular Neurobiology 53(1), 595–610 (2016).
DOI: https://doi.org/10.1007/s12035-014-9032-y. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820394

Picture
TRPM7 kinase activity regulates murine mast cell degranulation
Zierler, S., Sumoza-Toledo, A., Suzuki, S., Dúill, F. Ó., Ryazanova, L. V., Penner, R., Ryazanov, A. G., & Fleig, A.
The Journal of Physiology 594(11), 2957–2970 (2016).
DOI: https://doi.org/10.1113/JP271564. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887679

Picture
State-dependent blocking mechanism of Kv1.3 channels by the antimycobacterial drug clofazimine
Faouzi, M., Starkus, J., & Penner, R.
British Journal of Pharmacology 172(21), 5161–5173 (2015).
DOI: https://doi.org/10.1111/bph.13283. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687807

Picture
Small-conductance Ca2+-activated potassium type 2 channels regulate the formation of contextual fear memory
Murthy, S. R. K., Sherrin, T., Jansen, C., Nijholt, I., Robles, M., Dolga, A. M., Andreotti, N., Sabatier, J.-M., Knaus, H.-G., Penner, R., Todorovic, C., & Blank, T.
PloS One 10(5), e0127264 (2015).
DOI: https://doi.org/10.1371/journal.pone.0127264. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418695

Picture
Regulation of endogenous and heterologous Ca2+ release-activated Ca2+ currents by pH
Beck, A., Fleig, A., Penner, R., & Peinelt, C.
Cell Calcium 56(3), 235–243 (2014).
DOI: https://doi.org/10.1016/j.ceca.2014.07.011. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162834

Picture
TRPM2
Faouzi, M., & Penner, R.
Handbook of Experimental Pharmacology 222, 403–426 (2014).
DOI: https://doi.org/10.1007/978-3-642-54215-2_16. PMID: https://www.ncbi.nlm.nih.gov/pubmed/24756715

Picture
TRPM7
Fleig, A., & Chubanov, V.
Handbook of Experimental Pharmacology 222, 521–546 (2014).
DOI: https://doi.org/10.1007/978-3-642-54215-2_21. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663634

Picture
Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice
Ryazanova, L. V., Hu, Z., Suzuki, S., Chubanov, V., Fleig, A., & Ryazanov, A. G.
Scientific Reports 4, 7599 (2014).
DOI: https://doi.org/10.1038/srep07599. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274504

Picture
N-Myc-induced up-regulation of TRPM6/TRPM7 channels promotes neuroblastoma cell proliferation
Zhang, Z., Faouzi, M., Huang, J., Geerts, D., Yu, H., Fleig, A., & Penner, R.
Oncotarget 5(17), 7625–7634 (2014).
DOI: https://doi.org/10.18632/oncotarget.2283. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4202149

Picture
The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels
Zhang, Z., Yu, H., Huang, J., Faouzi, M., Schmitz, C., Penner, R., & Fleig, A.
The Journal of Biological Chemistry 289(8), 5217–5227 (2014).
DOI: https://doi.org/10.1074/jbc.M113.512285. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931078

Picture
ORAI3 silencing alters cell proliferation and cell cycle progression via c-myc pathway in breast cancer cells
Faouzi, M., Kischel, P., Hague, F., Ahidouch, A., Benzerdjeb, N., Sevestre, H., Penner, R., & Ouadid-Ahidouch, H.
Biochimica et Biophysica Acta 1833(3), 752–760 (2013).
DOI: https://doi.org/10.1016/j.bbamcr.2012.12.009. PMID: https://www.ncbi.nlm.nih.gov/pubmed/23266555

Picture
Solute Carrier Family SLC41, what do we really know about it?
Fleig, A., Schweigel-Röntgen, M., & Kolisek, M.
Wiley Interdisciplinary Reviews. Membrane Transport and Signaling 2(6) (2013).
DOI: https://doi.org/10.1002/wmts.95. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855994

Picture
TRPM2 channels are not required for acute airway inflammation in OVA-induced severe allergic asthma in mice
Sumoza-Toledo, A., Fleig, A., & Penner, R.
Journal of Inflammation (London, England) 10(1), 19 (2013).
DOI: https://doi.org/10.1186/1476-9255-10-19. PMID: https://www.ncbi.nlm.nih.gov/pubmed/23631390

Picture
STIM2 drives Ca2+ oscillations through store-operated Ca2+ entry caused by mild store depletion
Thiel, M., Lis, A., & Penner, R.
The Journal of Physiology 591(Pt 6), 1433–1445 (2013).
DOI: https://doi.org/10.1113/jphysiol.2012.245399. PMID: https://www.ncbi.nlm.nih.gov/pubmed/23359669

Picture
TRPM7 triggers Ca2+ sparks and invadosome formation in neuroblastoma cells
Visser, D., Langeslag, M., Kedziora, K. M., Klarenbeek, J., Kamermans, A., Horgen, F. D., Fleig, A., van Leeuwen, F. N., & Jalink, K.
Cell Calcium 54(6), 404–415 (2013).
DOI: https://doi.org/10.1016/j.ceca.2013.09.003. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912378

Picture
TRPM7 is regulated by halides through its kinase domain
Yu, H., Zhang, Z., Lis, A., Penner, R., & Fleig, A.
Cellular and Molecular Life Sciences: CMLS (2013).
DOI: https://doi.org/10.1007/s00018-013-1284-6. PMID: https://www.ncbi.nlm.nih.gov/pubmed/23471296

Picture
Stimulation of Ca2+ channel Orai1/STIM1 by serum- and glucocorticoid-inducible kinase 1 (SGK1)
Eylenstein, A., Gehring, E.-M., Heise, N., Shumilina, E., Schmidt, S., Szteyn, K., Münzer, P., Nurbaeva, M. K., Eichenmüller, M., Tyan, L., Regel, I., Föller, M., Kuhl, D., Soboloff, J., Penner, R., & Lang, F.
The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 25(6), 2012–2021 (2011).
DOI: https://doi.org/10.1096/fj.10-178210. PMID: https://www.ncbi.nlm.nih.gov/pubmed/21385992

Picture
Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca2+ release
Sumoza-Toledo, A., Lange, I., Cortado, H., Bhagat, H., Mori, Y., Fleig, A., Penner, R., & Partida-Sánchez, S.
The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 25(10), 3529–3542 (2011).
DOI: https://doi.org/10.1096/fj.10-178483. PMID: https://www.ncbi.nlm.nih.gov/pubmed/21753080

Picture
TRPM2: A multifunctional ion channel for calcium signaling
Sumoza-Toledo, A., & Penner, R.
The Journal of Physiology 589(Pt 7), 1515–1525 (2011).
DOI: https://doi.org/10.1113/jphysiol.2010.201855. PMID: https://www.ncbi.nlm.nih.gov/pubmed/21135052

Picture
Waixenicin A inhibits cell proliferation through magnesium-dependent block of Transient Receptor Potential Melastatin 7 (TRPM7) channels
Zierler, S., Yao, G., Zhang, Z., Kuo, W. C., Pörzgen, P., Penner, R., Horgen, F. D., & Fleig, A.
The Journal of Biological Chemistry 286(45), 39328–39335 (2011).
DOI: https://doi.org/10.1074/jbc.M111.264341. PMID: https://www.ncbi.nlm.nih.gov/pubmed/21926172

Picture
TRPM5 regulates glucose-stimulated insulin secretion
Brixel, L. R., Monteilh-Zoller, M. K., Ingenbrandt, C. S., Fleig, A., Penner, R., Enklaar, T., Zabel, B. U., & Prawitt, D.
Pflügers Archiv: European Journal of Physiology 460(1), 69–76 (2010).
DOI: https://doi.org/10.1007/s00424-010-0835-z. PMID: https://www.ncbi.nlm.nih.gov/pubmed/20393858

Picture
Development and optimization of a high-throughput bioassay for TRPM7 ion channel inhibitors
Castillo, B., Pörzgen, P., Penner, R., Horgen, F. D., & Fleig, A.
Journal of Biomolecular Screening 15(5), 498–507 (2010).
DOI: https://doi.org/10.1177/1087057110368294. PMID: https://www.ncbi.nlm.nih.gov/pubmed/20413646

Picture
Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca2+ entry via STIM proteins
Goto, J.-I., Suzuki, A. Z., Ozaki, S., Matsumoto, N., Nakamura, T., Ebisui, E., Fleig, A., Penner, R., & Mikoshiba, K.
Cell Calcium 47(1), 1–10 (2010).
DOI: https://doi.org/10.1016/j.ceca.2009.10.004. PMID: https://www.ncbi.nlm.nih.gov/pubmed/19945161

Picture
Activation of store-operated ICRAC by hydrogen peroxide
Grupe, M., Myers, G., Penner, R., & Fleig, A.
Cell Calcium 48(1), 1–9 (2010).
DOI: https://doi.org/10.1016/j.ceca.2010.05.005. PMID: https://www.ncbi.nlm.nih.gov/pubmed/20646759

Picture
A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating
Lis, A., Zierler, S., Peinelt, C., Fleig, A., & Penner, R.
The Journal of General Physiology 136(6), 673–686 (2010).
DOI: https://doi.org/10.1085/jgp.201010484. PMID: https://www.ncbi.nlm.nih.gov/pubmed/21115697

Picture
TRPM7 is essential for Mg2+ homeostasis in mammals
Ryazanova, L. V., Rondon, L. J., Zierler, S., Hu, Z., Galli, J., Yamaguchi, T. P., Mazur, A., Fleig, A., & Ryazanov, A. G.
Nature Communications 1, 109 (2010).
DOI: https://doi.org/10.1038/ncomms1108. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060619

Picture
The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification
Starkus, J. G., Fleig, A., & Penner, R.
The Journal of Physiology 588(Pt 8), 1227–1240 (2010).
DOI: https://doi.org/10.1113/jphysiol.2010.187476. PMID: https://www.ncbi.nlm.nih.gov/pubmed/20194125

Picture
TRPM2 functions as a lysosomal Ca2+-release channel in beta cells
Lange, I., Yamamoto, S., Partida-Sanchez, S., Mori, Y., Fleig, A., & Penner, R.
Science Signaling 2(71), ra23 (2009).
DOI: https://doi.org/10.1126/scisignal.2000278. PMID: https://www.ncbi.nlm.nih.gov/pubmed/19454650

Picture
IP3 receptor subtype-dependent activation of store-operated calcium entry through ICRAC
Peinelt, C., Beck, A., Monteilh-Zoller, M. K., Penner, R., & Fleig, A.
Cell Calcium 45(4), 326–330 (2009).
DOI: https://doi.org/10.1016/j.ceca.2008.12.001. PMID: https://www.ncbi.nlm.nih.gov/pubmed/19157540

Picture
Lipopolysaccharide-induced down-regulation of Ca2+ release-activated Ca2+ currents (ICRAC) but not Ca2+-activated TRPM4-like currents (ICAN) in cultured mouse microglial cells
Beck, A., Penner, R., & Fleig, A.
The Journal of Physiology 586(2), 427–439 (2008).
DOI: https://doi.org/10.1113/jphysiol.2007.145151. PMID: https://www.ncbi.nlm.nih.gov/pubmed/17991695

Picture
SLC41A1 is a novel mammalian Mg2+ carrier
Kolisek, M., Launay, P., Beck, A., Sponder, G., Serafini, N., Brenkus, M., Froschauer, E. M., Martens, H., Fleig, A., & Schweigel, M.
The Journal of Biological Chemistry 283(23), 16235–16247 (2008).
DOI: https://doi.org/10.1074/jbc.M707276200. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2414286

Picture
Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils
Lange, I., Penner, R., Fleig, A., & Beck, A.
Cell Calcium 44(6), 604–615 (2008).
DOI: https://doi.org/10.1016/j.ceca.2008.05.001. PMID: https://www.ncbi.nlm.nih.gov/pubmed/18572241

Picture
STIM2 protein mediates distinct store-dependent and store-independent modes of CRAC channel activation
Parvez, S., Beck, A., Peinelt, C., Soboloff, J., Lis, A., Monteilh-Zoller, M., Gill, D. L., Fleig, A., & Penner, R.
The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 22(3), 752–761 (2008).
DOI: https://doi.org/10.1096/fj.07-9449com. PMID: https://www.ncbi.nlm.nih.gov/pubmed/17905723

Picture
2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels
Peinelt, C., Lis, A., Beck, A., Fleig, A., & Penner, R.
The Journal of Physiology 586(13), 3061–3073 (2008).
DOI: https://doi.org/10.1113/jphysiol.2008.151365. PMID: https://www.ncbi.nlm.nih.gov/pubmed/18403424

Picture
Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes
Ren, Y. R., Pan, F., Parvez, S., Fleig, A., Chong, C. R., Xu, J., Dang, Y., Zhang, J., Jiang, H., Penner, R., & Liu, J. O.
PloS One 3(12), e4009 (2008).
DOI: https://doi.org/10.1371/journal.pone.0004009. PMID: https://www.ncbi.nlm.nih.gov/pubmed/19104661

Picture
TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration
Yamamoto, S., Shimizu, S., Kiyonaka, S., Takahashi, N., Wajima, T., Hara, Y., Negoro, T., Hiroi, T., Kiuchi, Y., Okada, T., Kaneko, S., Lange, I., Fleig, A., Penner, R., Nishi, M., Takeshima, H., & Mori, Y.
Nature Medicine 14(7), 738–747 (2008).
DOI: https://doi.org/10.1038/nm1758. PMID: https://www.ncbi.nlm.nih.gov/pubmed/18542050

Picture
TRPM7 channel is sensitive to osmotic gradients in human kidney cells
Bessac, B. F., & Fleig, A.
The Journal of Physiology 582(Pt 3), 1073–1086 (2007).
DOI: https://doi.org/10.1113/jphysiol.2007.130534. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075261

Picture
TRPM4 controls insulin secretion in pancreatic β-cells
Cheng, H., Beck, A., Launay, P., Gross, S. A., Stokes, A. J., Kinet, J.-P., Fleig, A., & Penner, R.
Cell Calcium 41(1), 51–61 (2007).
DOI: https://doi.org/10.1016/j.ceca.2006.04.032. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16806463

Picture
CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties
Lis, A., Peinelt, C., Beck, A., Parvez, S., Monteilh-Zoller, M., Fleig, A., & Penner, R.
Current Biology: CB 17(9), 794–800 (2007).
DOI: https://doi.org/10.1016/j.cub.2007.03.065. PMID: https://www.ncbi.nlm.nih.gov/pubmed/17442569

Picture
The Mg2+ and Mg2+-nucleotide-regulated channel-kinase TRPM7
Penner, R., & Fleig, A.
Handbook of Experimental Pharmacology 179(179), 313–328 (2007).
DOI: https://doi.org/10.1007/978-3-540-34891-7_19. PMID: https://www.ncbi.nlm.nih.gov/pubmed/17217066

Picture
Regulation of TRPM2 by extra- and intracellular calcium
Starkus, J., Beck, A., Fleig, A., & Penner, R.
The Journal of General Physiology 130(4), 427–440 (2007).
DOI: https://doi.org/10.1085/jgp.200709836. PMID: https://www.ncbi.nlm.nih.gov/pubmed/17893195

Picture
Cell cycle-dependent regulation of store-operated ICRAC and Mg2+-nucleotide-regulated MagNuM (TRPM7) currents
Tani, D., Monteilh-Zoller, M. K., Fleig, A., & Penner, R.
Cell Calcium 41(3), 249–260 (2007).
DOI: https://doi.org/10.1016/j.ceca.2006.07.004. PMID: https://www.ncbi.nlm.nih.gov/pubmed/17064762

Picture
Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes
Beck, A., Kolisek, M., Bagley, L. A., Fleig, A., & Penner, R.
The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 20(7), 962–964 (2006).
DOI: https://doi.org/10.1096/fj.05-5538fje. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16585058

Picture
TRPM7 channel is regulated by magnesium nucleotides via its kinase domain
Demeuse, P., Penner, R., & Fleig, A.
The Journal of General Physiology 127(4), 421–434 (2006).
DOI: https://doi.org/10.1085/jgp.200509410. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16533898

Picture
Amplification of CRAC current by STIM1 and CRACM1 (Orai1)
Peinelt, C., Vig, M., Koomoa, D. L., Beck, A., Nadler, M. J. S., Koblan-Huberson, M., Lis, A., Fleig, A., Penner, R., & Kinet, J.-P.
Nature Cell Biology 8(7), 771–773 (2006).
DOI: https://doi.org/10.1038/ncb1435. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16733527

Picture
TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD
Stokes, A., Wakano, C., Koblan-Huberson, M., Adra, C. N., Fleig, A., & Turner, H.
Cellular Signalling 18(10), 1584–1594 (2006).
DOI: https://doi.org/10.1016/j.cellsig.2005.12.009. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16500080

Picture
A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity
Takezawa, R., Cheng, H., Beck, A., Ishikawa, J., Launay, P., Kubota, H., Kinet, J.-P., Fleig, A., Yamada, T., & Penner, R.
Molecular Pharmacology 69(4), 1413–1420 (2006).
DOI: https://doi.org/10.1124/mol.105.021154. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16407466

Picture
CRACM1 multimers form the ion-selective pore of the CRAC channel
Vig, M., Beck, A., Billingsley, J. M., Lis, A., Parvez, S., Peinelt, C., Koomoa, D. L., Soboloff, J., Gill, D. L., Fleig, A., Kinet, J.-P., & Penner, R.
Current Biology: CB 16(20), 2073–2079 (2006).
DOI: https://doi.org/10.1016/j.cub.2006.08.085. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16978865

Picture
CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry
Vig, M., Peinelt, C., Beck, A., Koomoa, D. L., Rabah, D., Koblan-Huberson, M., Kraft, S., Turner, H., Fleig, A., Penner, R., & Kinet, J.-P.
Science (New York, N.Y.) 312(5777), 1220–1223 (2006).
DOI: https://doi.org/10.1126/science.1127883. PMID: https://www.ncbi.nlm.nih.gov/pubmed/16645049

Picture
Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels
Kolisek, M., Beck, A., Fleig, A., & Penner, R.
Molecular Cell 18(1), 61–69 (2005).
DOI: https://doi.org/10.1016/j.molcel.2005.02.033. PMID: https://www.ncbi.nlm.nih.gov/pubmed/15808509

Picture
Emerging roles of TRPM channels
Fleig, A., & Penner, R.
Novartis Foundation Symposium 258, 248–258; discussion 258-266 (2004).
PMID: https://www.ncbi.nlm.nih.gov/pubmed/15104187

Picture
The TRPM ion channel subfamily: Molecular, biophysical and functional features
Fleig, A., & Penner, R.
Trends in Pharmacological Sciences 25(12), 633–639 (2004).
DOI: https://doi.org/10.1016/j.tips.2004.10.004. PMID: https://www.ncbi.nlm.nih.gov/pubmed/15530641

Picture
D-6-Deoxy-myo-inositol 1,3,4,5-tetrakisphosphate, a mimic of d-myo-inositol 1,3,4,5-tetrakisphosphate: Biological activity and pH-dependent conformational properties
Horne, G., Maechling, C., Fleig, A., Hirata, M., Penner, R., Spiess, B., & Potter, B. V. L.
Biochemical and Biophysical Research Communications 320(4), 1262–1270 (2004).
DOI: https://doi.org/10.1016/j.bbrc.2004.06.079. PMID: https://www.ncbi.nlm.nih.gov/pubmed/15249226

Picture
TRPM4 regulates calcium oscillations after T cell activation
Launay, P., Cheng, H., Srivatsan, S., Penner, R., Fleig, A., & Kinet, J.-P.
Science (New York, N.Y.) 306(5700), 1374–1377 (2004).
DOI: https://doi.org/10.1126/science.1098845. PMID: https://www.ncbi.nlm.nih.gov/pubmed/15550671

Picture
Store-operated calcium entry: A tough nut to CRAC
Penner, R., & Fleig, A.
Science’s STKE: Signal Transduction Knowledge Environment 2004(243), pe38 (2004).
DOI: https://doi.org/10.1126/stke.2432004pe38. PMID: https://www.ncbi.nlm.nih.gov/pubmed/15280580

Picture
Dual-function ion channel/protein kinases: Novel components of vertebrate magnesium regulatory mechanisms
Schmitz, C., Perraud, A.-L., Fleig, A., & Scharenberg, A. M.
Pediatric Research 55(5), 734–737 (2004).
DOI: https://doi.org/10.1203/01.PDR.0000117848.37520.A2. PMID: https://www.ncbi.nlm.nih.gov/pubmed/14764909

Picture
Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain
Takezawa, R., Schmitz, C., Demeuse, P., Scharenberg, A. M., Penner, R., & Fleig, A.
Proceedings of the National Academy of Sciences of the United States of America 101(16), 6009–6014 (2004).
DOI: https://doi.org/10.1073/pnas.0307565101. PMID: https://www.ncbi.nlm.nih.gov/pubmed/15069188

Picture
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions
Monteilh-Zoller, M. K., Hermosura, M. C., Nadler, M. J. S., Scharenberg, A. M., Penner, R., & Fleig, A.
The Journal of General Physiology 121(1), 49–60 (2003).
DOI: https://doi.org/10.1085/jgp.20028740. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217320

Picture
TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i
Prawitt, D., Monteilh-Zoller, M. K., Brixel, L., Spangenberg, C., Zabel, B., Fleig, A., & Penner, R.
Proceedings of the National Academy of Sciences of the United States of America 100(25), 15166–15171 (2003).
DOI: https://doi.org/10.1073/pnas.2334624100. PMID: https://www.ncbi.nlm.nih.gov/pubmed/14634208

Picture
Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7
Schmitz, C., Perraud, A.-L., Johnson, C. O., Inabe, K., Smith, M. K., Penner, R., Kurosaki, T., Fleig, A., & Scharenberg, A. M.
Cell 114(2), 191–200 (2003).
DOI: https://doi.org/10.1016/s0092-8674(03)00556-7. PMID: https://www.ncbi.nlm.nih.gov/pubmed/12887921

Picture
Discrimination of intracellular calcium store subcompartments using TRPV1 (Transient Receptor Potential Channel, Vanilloid subfamily member 1) release channel activity
Turner, H., Fleig, A., Stokes, A., Kinet, J.-P., & Penner, R.
The Biochemical Journal 371(Pt 2), 341–350 (2003).
DOI: https://doi.org/10.1042/BJ20021381. PMID: https://www.ncbi.nlm.nih.gov/pubmed/12513687

Picture
Dissociation of the store-operated calcium current ICRAC and the Mg-nucleotide-regulated metal ion current MagNuM
Hermosura, M. C., Monteilh-Zoller, M. K., Scharenberg, A. M., Penner, R., & Fleig, A.
The Journal of Physiology 539(Pt 2), 445–458 (2002).
DOI: https://doi.org/10.1113/jphysiol.2001.013361. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290162

Picture
TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization
Launay, P., Fleig, A., Perraud, A. L., Scharenberg, A. M., Penner, R., & Kinet, J. P.
Cell 109(3), 397–407 (2002).
DOI: https://doi.org/10.1016/s0092-8674(02)00719-5. PMID: https://www.ncbi.nlm.nih.gov/pubmed/12015988

Picture
A unified nomenclature for the superfamily of TRP cation channels
Montell, C., Birnbaumer, L., Flockerzi, V., Bindels, R. J., Bruford, E. A., Caterina, M. J., Clapham, D. E., Harteneck, C., Heller, S., Julius, D., Kojima, I., Mori, Y., Penner, R., Prawitt, D., Scharenberg, A. M., Schultz, G., Shimizu, N., & Zhu, M. X.
Molecular Cell 9(2), 229–231 (2002).
DOI: https://doi.org/10.1016/S1097-2765(02)00448-3. PMID: https://www.ncbi.nlm.nih.gov/pubmed/11864597

Picture
Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes
Mori, Y., Wakamori, M., Miyakawa, T., Hermosura, M., Hara, Y., Nishida, M., Hirose, K., Mizushima, A., Kurosaki, M., Mori, E., Gotoh, K., Okada, T., Fleig, A., Penner, R., Iino, M., & Kurosaki, T.
The Journal of Experimental Medicine 195(6), 673–681 (2002).
DOI: https://doi.org/10.1084/jem.20011758. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193746

Picture
LTRPC7 is a Mg·ATP-regulated divalent cation channel required for cell viability
Nadler, M. J., Hermosura, M. C., Inabe, K., Perraud, A. L., Zhu, Q., Stokes, A. J., Kurosaki, T., Kinet, J. P., Penner, R., Scharenberg, A. M., & Fleig, A.
Nature 411(6837), 590–595 (2001).
DOI: https://doi.org/10.1038/35079092. PMID: https://www.ncbi.nlm.nih.gov/pubmed/11385574

Picture
ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology
Perraud, A. L., Fleig, A., Dunn, C. A., Bagley, L. A., Launay, P., Schmitz, C., Stokes, A. J., Zhu, Q., Bessman, M. J., Penner, R., Kinet, J. P., & Scharenberg, A. M.
Nature 411(6837), 595–599 (2001).
DOI: https://doi.org/10.1038/35079100. PMID: https://www.ncbi.nlm.nih.gov/pubmed/11385575

Picture
CaT1 and the calcium release-activated calcium channel manifest distinct pore properties
Voets, T., Prenen, J., Fleig, A., Vennekens, R., Watanabe, H., Hoenderop, J. G., Bindels, R. J., Droogmans, G., Penner, R., & Nilius, B.
The Journal of Biological Chemistry 276(51), 47767–47770 (2001).
DOI: https://doi.org/10.1074/jbc.C100607200. PMID: https://www.ncbi.nlm.nih.gov/pubmed/11687570

Picture
Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (Pipidae): Measurement by means of conditioning
Elepfandt, A., Eistetter, I., Fleig, A., Günther, E., Hainich, M., Hepperle, S., & Traub, B.
The Journal of Experimental Biology 203(Pt 23), 3621–3629 (2000).
PMID: https://www.ncbi.nlm.nih.gov/pubmed/11060223

Picture
InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase
Hermosura, M. C., Takeuchi, H., Fleig, A., Riley, A. M., Potter, B. V., Hirata, M., & Penner, R.
Nature 408(6813), 735–740 (2000).
DOI: https://doi.org/10.1038/35047115. PMID: https://www.ncbi.nlm.nih.gov/pubmed/11130077

Previous Publications

Picture
Differential modulation of voltage-dependent Ca2+ currents by EGTA and BAPTA in bovine adrenal chromaffin cells
Bödding, M., & Penner, R.
Pflugers Archiv: European Journal of Physiology 439(1–2), 27–38 (1999).
DOI: https://doi.org/10.1007/s004249900158. PMID: https://www.ncbi.nlm.nih.gov/pubmed/10650997

Picture
Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine
​Mathes, C., Fleig, A., & Penner, R.

The Journal of Biological Chemistry 273(39), 25020–25030 (1998).
DOI: https://doi.org/10.1074/jbc.273.39.25020. PMID: https://www.ncbi.nlm.nih.gov/pubmed/9737958

Picture
Near-visible ultraviolet light induces a novel ubiquitous calcium-permeable cation current in mammalian cell lines
Mendez, F., & Penner, R.
The Journal of Physiology 507 ( Pt 2), 365–377 (1998).
DOI: https://doi.org/10.1111/j.1469-7793.1998.365bt.x. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2230791

Picture
The store-operated calcium current ICRAC: Nonlinear activation by InsP3 and dissociation from calcium release
Parekh, A. B., Fleig, A., & Penner, R.
Cell 89(6), 973–980 (1997).
DOI: https://doi.org/10.1016/s0092-8674(00)80282-2. PMID: https://www.ncbi.nlm.nih.gov/pubmed/9200615

Picture
Effects of clamp rise-time on rat brain IIA sodium channels in Xenopus oocytes
Ruben, P. C., Fleig, A., Featherstone, D., Starkus, J. G., & Rayner, M. D.

Journal of Neuroscience Methods 73(2), 113–122 (1997).
PMID: https://www.ncbi.nlm.nih.gov/pubmed/9196281

Picture
Store depletion and calcium influx
Parekh, A. B., & Penner, R.
Physiological Reviews 77(4), 901–930 (1997).
DOI: https://doi.org/10.1152/physrev.1997.77.4.901. PMID: https://www.ncbi.nlm.nih.gov/pubmed/9354808

Picture
Ca2+-induced Ca2+ release in Chinese hamster ovary (CHO) cells co-expressing dihydropyridine and ryanodine receptors
Suda, N., Franzius, D., Fleig, A., Nishimura, S., Bödding, M., Hoth, M., Takeshima, H., & Penner, R.
The Journal of General Physiology 109(5), 619–631 (1997).
DOI: https://doi.org/10.1085/jgp.109.5.619. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217062

Picture
Acceleration of membrane recycling by axotomy of cultured Aplysia neurons
​Ashery, U., Penner, R., & Spira, M. E.

Neuron 16(3), 641–651 (1996).
​PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/8785061

Picture
Silent calcium channels generate excessive tail currents and facilitation of calcium currents in rat skeletal myoballs
Fleig, A., & Penner, R.
The Journal of Physiology 494 ( Pt 1), 141–153 (1996).
DOI: https://doi.org/10.1113/jphysiol.1996.sp021481. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1160620

Picture
Absence of Ca2+ current facilitation in skeletal muscle of transgenic mice lacking the type 1 ryanodine receptor
Fleig, A., Takeshima, H., & Penner, R.
The Journal of Physiology 496 ( Pt 2), 339–345 (1996).
DOI: https://doi.org/10.1113/jphysiol.1996.sp021689. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1160881

Picture
Regulation of store-operated calcium currents in mast cells
​Parekh, A. B., & Penner, R.

Society of General Physiologists Series 51, 231–239 (1996).
​PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/8809947

Picture
Characterization of the Ca2+ current in isolated terminals of crustacean peptidergic neurons
​Richmond, J. E., Penner, R., Keller, R., & Cooke, I. M.

The Journal of Experimental Biology 199(Pt 9), 2053–2059 (1996).
​PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/8831146

Picture
Excessive repolarization-dependent calcium currents induced by strong depolarizations in rat skeletal myoballs
Fleig, A., & Penner, R.
The Journal of Physiology 489 ( Pt 1), 41–53 (1995).
DOI: https://doi.org/10.1113/jphysiol.1995.sp021028. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1156790

Picture
Activation of store-operated calcium influx at resting InsP3 levels by sensitization of the InsP3 receptor in rat basophilic leukaemia cells
Parekh, A. B., & Penner, R.
The Journal of Physiology 489 ( Pt 2), 377–382 (1995).
DOI: https://doi.org/10.1113/jphysiol.1995.sp021058. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1156765

Picture
Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells
​Parekh, A. B., & Penner, R.

Proceedings of the National Academy of Sciences of the United States of America 92(17), 7907–7911 (1995).
DOI: https://doi.org/10.1073/pnas.92.17.7907. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC41255

Picture
Non-specific effects of calcium entry antagonists in mast cells
Franzius, D., Hoth, M., & Penner, R.
Pflugers Archiv: European Journal of Physiology 428(5–6), 433–438 (1994).
DOI: https://doi.org/10.1007/bf00374562. PMID: https://www.ncbi.nlm.nih.gov/pubmed/7838664

Picture
Mice sans synaptotagmin
Neher, E., & Penner, R.
Nature 372(6504), 316–317 (1994).
DOI: https://doi.org/10.1038/372316a0. PMID: https://www.ncbi.nlm.nih.gov/pubmed/7969483

Picture
Membrane repolarization stops caffeine-induced Ca2+ release in skeletal muscle cells
​Suda, N., & Penner, R.

Proceedings of the National Academy of Sciences of the United States of America 91(12), 5725–5729 (1994).
DOI: https://doi.org/10.1073/pnas.91.12.5725. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44069

Picture
Point mutations in IIS4 alter activation and inactivation of rat brain IIA Na channels in Xenopus oocyte macropatches
Fleig, A., Fitch, J. M., Goldin, A. L., Rayner, M. D., Starkus, J. G., & Ruben, P. C.

Pflügers Archiv: European Journal of Physiology 427(5–6), 406–413 (1994).
PMID: https://www.ncbi.nlm.nih.gov/pubmed/7971139

Picture
Kinetic mode switch of rat brain IIA Na channels in Xenopus oocytes excised macropatches
Fleig, A., Ruben, P. C., & Rayner, M. D.
Pflügers Archiv: European Journal of Physiology 427(5–6), 399–405 (1994).
DOI: https//doi.org/10.1007/bf00374253. PMID: https://www.ncbi.nlm.nih.gov/pubmed/797113

Picture
Fast and slow inactivation of sodium channels: Effects of photodynamic modification by methylene blue
Starkus, J. G., Rayner, M. D., Fleig, A., & Ruben, P. C.

Biophysical Journal 65(2), 715–726 (1993).
DOI: https://doi.org/10.1016/S0006-3495(93)81098-1. PMID: https://www.ncbi.nlm.nih.gov/pubmed/821889

Picture
Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells
Fasolato, C., Hoth, M., Matthews, G., & Penner, R.
Proceedings of the National Academy of Sciences of the United States of America 90(7), 3068–3072 (1993).
DOI: https://doi.org/10.1073/pnas.90.7.3068. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC46238

Picture
A GTP-dependent step in the activation mechanism of capacitative calcium influx
​Fasolato, C., Hoth, M., & Penner, R.

The Journal of Biological Chemistry 268(28), 20737–20740 (1993).
​PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/8407897

Picture
Multiple mechanisms of manganese-induced quenching of fura-2 fluorescence in rat mast cells
​Fasolato, C., Hoth, M., & Penner, R.

Pflugers Archiv: European Journal of Physiology 423(3–4), 225–231 (1993).
DOI: https://doi.org/10.1007/bf00374399. PMID: https://www.ncbi.nlm.nih.gov/pubmed/8321625

Picture
Ion channels and calcium signaling in mast cells
Hoth, M., Fasolato, C., & Penner, R.
Annals of the New York Academy of Sciences 707, 198–209 (1993).
DOI: https://doi.org/10.1111/j.1749-6632.1993.tb38053.x. PMID: https://www.ncbi.nlm.nih.gov/pubmed/9137553

Picture
Calcium release-activated calcium current in rat mast cells
Hoth, M., & Penner, R. 
​The Journal of Physiology 465, 359–386 (1993).
DOI: https://doi.org/10.1113/jphysiol.1993.sp019681. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1175434

Picture
Calcium influx and its control by calcium release
Penner, R., Fasolato, C., & Hoth, M.
Current Opinion in Neurobiology 3(3), 368–374 (1993).
​PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/8396477

Picture
Transfected cGMP-dependent protein kinase suppresses calcium transients by inhibition of inositol 1,4,5-trisphosphate production
Ruth, P., Wang, G. X., Boekhoff, I., May, B., Pfeifer, A., Penner, R., Korth, M., Breer, H., & Hofmann, F.
Proceedings of the National Academy of Sciences of the United States of America 90(7), 2623–2627 (1993).
DOI: https://doi.org/10.1073/pnas.90.7.2623. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC46147

Picture
Depletion of intracellular calcium stores activates a calcium current in mast cells
​Hoth, M., & Penner, R.

Nature 355(6358), 353–356 (1992).
DOI: https://doi.org/10.1038/355353a0. PMID: https://www.ncbi.nlm.nih.gov/pubmed/1309940

Picture
Novel chloride conductance in the membrane of bovine chromaffin cells activated by intracellular GTP gamma S
Doroshenko, P., Penner, R., & Neher, E.
The Journal of Physiology 436, 711–724 (1991).
DOI: https://doi.org/10.1113/jphysiol.1991.sp018575. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1181530

Picture
Guanosine 5’-[beta-thio]triphosphate selectively activates calcium signaling in mast cells
​von zur Mühlen, F., Eckstein, F., & Penner, R.

Proceedings of the National Academy of Sciences of the United States of America 88(3), 926–930 (1991).
DOI: https://doi.org/10.1073/pnas.88.3.926. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC50927

Picture
A GTP analogue induces calcium release but not secretion in rat mast cells
von zur Mühlen, F., & Penner, R.

International Archives of Allergy and Applied Immunology 94(1–4), 74–75 (1991).
​PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/1657794

Picture
Effects of angiotensin II on intracellular calcium and electrical function of mouse renal juxtaglomerular cells
Kurtz, A., & Penner, R.
Kidney International. Supplement 30, S51-54 (1990).
​PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/2175372

Picture
Lack of direct evidence for a functional role of voltage-operated calcium channels in juxtaglomerular cells
Kurtz, A., Skott, O., Chegini, S., & Penner, R.
Pflugers Archiv: European Journal of Physiology 416(3), 281–287 (1990).
DOI: https://doi.org/10.1007/bf00392064. PMID: https://www.ncbi.nlm.nih.gov/pubmed/2166274

Picture
Angiotensin II induces oscillations of intracellular calcium and blocks anomalous inward rectifying potassium current in mouse renal juxtaglomerular cells
Kurtz, A., & Penner, R.
Proceedings of the National Academy of Sciences of the United States of America 86(9), 3423–3427 (1989).
DOI: https://doi.org/10.1073/pnas.86.9.3423. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC287145

Picture
Chloride conductance activated by external agonists and internal messengers in rat peritoneal mast cells
Matthews, G., Neher, E., & Penner, R.
The Journal of Physiology 418, 131–144 (1989).
DOI: https://doi.org/10.1113/jphysiol.1989.sp017831. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1189962

Picture
Second messenger-activated calcium influx in rat peritoneal mast cells
Matthews, G., Neher, E., & Penner, R. 
​The Journal of Physiology 418, 105–130 (1989).

DOI: https://doi.org/10.1113/jphysiol.1989.sp017830. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1189961

Picture
Stimulus-secretion coupling in mast cells
Penner, R., & Neher, E.
Society of General Physiologists Series 44, 295–310 (1989).
​PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/2781355

Picture
[The importance of calcium for secretion in excitable and non-excitable cells]
Penner, R., & Neher, E.
Arzneimittel-Forschung 39(1A), 174–177 (1989).
​PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/2655617

Picture
The patch-clamp technique in the study of secretion
Penner, R., & Neher, E.
Trends in Neurosciences 12(4), 159–163 (1989).
DOI: https://doi.org/10.1016/0166-2236(89)90059-3. PMID: https://www.ncbi.nlm.nih.gov/pubmed/2470174

Picture
Functional expression of the calcium release channel from skeletal muscle ryanodine receptor cDNA
Penner, R., Neher, E., Takeshima, H., Nishimura, S., & Numa, S.
FEBS Letters 259(1), 217–221 (1989).
DOI: https://doi.org/10.1016/0014-5793(89)81532-7. PMID: https://www.ncbi.nlm.nih.gov/pubmed/2557244

Picture
Multiple signaling pathways control stimulus-secretion coupling in rat peritoneal mast cells
​Penner, R.

Proceedings of the National Academy of Sciences of the United States of America 85(24), 9856–9860 (1988).
DOI: https://doi.org/10.1073/pnas.85.24.9856. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC282880

Picture
Regulation of calcium influx by second messengers in rat mast cells
Penner, R., Matthews, G., & Neher, E. 
​Nature 334(6182), 499–504 (1988).

DOI: https://doi.org/10.1038/334499a0. PMID: https://www.ncbi.nlm.nih.gov/pubmed/2457169

Picture
Secretory responses of rat peritoneal mast cells to high intracellular calcium 
Penner, R., & Neher, E.

FEBS Letters 226(2), 307–313 (1988).
DOI: https://doi.org/10.1016/0014-5793(88)81445-5. PMID: https://www.ncbi.nlm.nih.gov/pubmed/3123272

Picture
The role of calcium in stimulus-secretion coupling in excitable and non-excitable cells 
Penner, R., & Neher, E.

The Journal of Experimental Biology 139, 329–345 (1988). 
PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/2850338

Picture
The actions of presynaptic snake toxins on membrane currents of mouse motor nerve terminals 
Dreyer, F., & Penner, R.

The Journal of Physiology 386, 455–463 (1987).
DOI: https://doi.org/10.1113/jphysiol.1987.sp016544. PMCID: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1192472

Picture
Differential effects of various secretagogues on quantal transmitter release from mouse motor nerve terminals treated with botulinum A and tetanus toxin
Dreyer, F., Rosenberg, F., Becker, C., Bigalke, H., & Penner, R.
Naunyn-Schmiedeberg’s Archives of Pharmacology 335(1), 1–7 (1987).
DOI: https://doi.org/10.1007/bf00165027. PMID: https://www.ncbi.nlm.nih.gov/pubmed/2883583

Picture
Distinct sites of action of clostridial neurotoxins revealed by double-poisoning of mouse motor nerve terminals
Gansel, M., Penner, R., & Dreyer, F.
Pflugers Archiv: European Journal of Physiology 409(4–5), 533–539 (1987).
DOI: https://doi.org/10.1007/bf00583812. PMID: https://www.ncbi.nlm.nih.gov/pubmed/2888074

Picture
Washout phenomena in dialyzed mast cells allow discrimination of different steps in stimulus-secretion coupling
Penner, R., Pusch, M., & Neher, E.
Bioscience Reports 7(4), 313–321 (1987).
DOI: https://doi.org/10.1007/bf01121453. PMID: https://www.ncbi.nlm.nih.gov/pubmed/2445392

Picture
Two different presynaptic calcium currents in mouse motor nerve terminals 
Penner, R., & Dreyer, F.

Pflugers Archiv: European Journal of Physiology 406(2), 190–197 (1986).
DOI: https://doi.org/10.1007/bf00586682. PMID: https://www.ncbi.nlm.nih.gov/pubmed/2421238

Picture
Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells 
Penner, R., Neher, E., & Dreyer, F.

Nature 324(6092), 76–78 (1986).
DOI: https://doi.org/10.1038/324076a0. PMID: https://www.ncbi.nlm.nih.gov/pubmed/3785374

Picture
Dendrotoxin: A selective blocker of a non-inactivating potassium current in guinea-pig dorsal root ganglion neurones
Penner, R., Petersen, M., Pierau, F. K., & Dreyer, F.
Pflugers Archiv: European Journal of Physiology 407(4), 365–369 (1986).
DOI: https://doi.org/10.1007/bf00652619. PMID: https://www.ncbi.nlm.nih.gov/pubmed/2430257

Picture
Beta-bungarotoxin inhibits a non-inactivating potassium current in guinea pig dorsal root ganglion neurones
Petersen, M., Penner, R., Pierau, F. K., & Dreyer, F.
Neuroscience Letters 68(1), 141–145 (1986).
DOI: https://doi.org/10.1016/0304-3940(86)90244-2. PMID: https://www.ncbi.nlm.nih.gov/pubmed/2425306

Picture
Action of botulinum A toxin and tetanus toxin on synaptic transmission
Dreyer, F., Becker, C., Bigalke, H., Funk, J., Penner, R., Rosenberg, F., & Ziegler, M.

Journal De Physiologie 79(4), 252–258 (1984). 
PMID: 
https://www.ncbi.nlm.nih.gov/pubmed/6152293